HIGH ENTROPY ALLOWS A BETTER AFFINITY BETWEEN METAL IONS AND ACTIVATED CARBON FIBRES

  • Sang Sun Choi Department of Environmental and Energy Engineering, Anyang University, Anyang 14028, Republic of Korea
  • Soon Hong Lee Department of Environmental and Energy Engineering, Anyang University, Anyang 14028, Republic of Korea
  • Kyung Jae Yun Department of Environmental and Energy Engineering, Anyang University, Anyang 14028, Republic of Korea
  • Young Min Jin Division of Korean Standards Coordination, Korea Testing Certification, Gunpo 15809, Republic of Korea
  • Joon Hyuk Lee Deparment of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
Keywords: randomness, microextraction, thermodynamics, isotherms

Abstract

Recent numerical approaches to extracting metal species using carbonaceous materials have de facto stimulated an interest in the field of microextraction, but theoretical observations inspired by randomness changes have been elusive. In this contribution, we present the degree of randomness using Cu (II) and Pb (II). Here, activated carbon fibres were employed as the skeleton adsorbent, providing scientific insights via the aqueous phase. Coupled isotherms of Langmuir and Freundlich were represented to unravel the aforementioned thermodynamics. Findings revealed that the Langmuir isotherm best described the equilibrium state and the trend was in accordance with the energy computation. The maximum microextraction performance was 84.75 mg/g and 102.04 mg/g for Cu (II) and Pb (II), respectively. Under all circumstances, there was a high randomness change as the microextraction performance increased.

References

1 R. Rao, M. Esposito, Nonequilibrium thermodynamics of chemical reaction networks: wisdom from stochastic thermodynamics, Phys. Rev. X., 6 (2016) 4, 041064, doi:10.1103/PhysRevX.6.041064
2 T. P. Belova, Adsorption of heavy metal ions (Cu2+, Ni2+, Co2+ and Fe2+) from aqueous solutions by natural zeolite, Heliyon., 5 (2019) 9, e02320, doi:10.1016/j.heliyon.2019.e02320
3 J. Sun, M. Li, Z. Zhang, J. Gou, Unravelling the adsorption disparity mechanism of heavy-metal ions on the biomass-derived hierarchically porous carbon, Appl. Surf. Sci., 417 (2019), 615–620, doi:10.1016/j.apsusc.2018.12.050
4 N. Diez, P. Alvarez, M. Granda, C. Blanco, R. Santamaria, R. Menendez, N-enriched ACF from coal-based pitch blended with urea-based resin for CO2 capture, Micropor. Mesopor. Mat., 201 (2015), 10–16, doi:10.1016/j.micromeso.2014.08.054
5 O. Ucarli, O. T. Yayintas, M. S. Engin, S. Cay, G. Saglikoglu, S. Yilmaz, Investigation of Competitive and Noncompetitive Adsorption of Some Heavy Metals Ions on Leucodon sciuroides (Hedw.) Schwa¨gr, Langmuir., 36 (2020) 28, 8265–8271, doi:10.1021/ acs.langmuir.0c01403
6 J. H. Lee, S. H. Lee, D. H. Suh, Using nanobubblized carbon dioxide for effective microextraction of heavy metals, J. CO2. Util., 39 (2020), 101163, doi:10.1016/j.jcou.2020.101163
7 D. J. McGarvey, A Data-Pooling Laboratory Activity to Investigate the Influence of Ionic Strength on the Solubility of CaSO4· 2H2O (s), J. Chem. Educ., 97 (2020) 2, 517–521, doi:10.1021/acs.jchemed. 9b00817
8 Q. Wu, Q, H. He, H. Zhou, F. Xue, H. Zhu, S. Zhou, S. Wang, Multiple active sites cellulose-based adsorbent for the removal of low-level Cu (II), Pb (II) and Cr (VI) via multiple cooperative mechanisms, Carbohydr. Polym., 233 (2020), 115860, doi:10.1016/ j.carbpol.2020.115860
9 M. Li, B. Lu, Q. F. Ke, Y. P. Gou, Synergetic effect between adsorption and photodegradation on nanostructured TiO2/activated carbon fiber felt porous composites for toluene removal, J. Hazard. Mater., 333 (2017), 88–98, doi:10.1016/j.jhazmat.2017.03.019
10 X. Du, K. Zheng, F. Liu, Microstructure and mechanical properties of graphene-reinforced aluminum-matrix composites, Mater. Tehnol., 52 (2018) 6, 763–768, doi:10.17222/mit.2018.021
11 G. Qu, L. Kou, T. Wang, D. Liang, S. Hu, Evaluation of activated carbon fiber supported nanoscale zero-valent iron for chromium (VI) removal from groundwater in a permeable reactive column, J. Environ. Manage., 201 (2017), 378–387, doi:10.1016/j.jenvman.2017. 07.010
12 C. E. Pelin, G. Pelin, A. Stefan, E. Andronescu, I. Dincã, A. Ficai, R. Truecã, Mechanical properties of polyamide/carbon-fiber-fabric composites, Mater. Tehnol., 50 (2016) 5, 723–728, doi:10.17222/ mit.2015.171
13 J. H. Lee, S. H. Lee, D. H. Suh, CO2 treatment of carbon fibers improves adsorption of fuel cell platinum, Environ. Chem. Lett., (2020), 1–6, doi:10.1007/s10311-020-01105-7
14 T. Bohli, A. Ouederni, Improvement of oxygen-containing functional groups on olive stones activated carbon by ozone and nitric acid for heavy metals removal from aqueous phase, Environ. Sci. Pollut. Res., 23 (2016) 16, 15852–15861, doi:10.1007/s11356-015-4330-0
15 L. Esrafili, V. Safarifard, E. Tahmasebi, M. D. Esrafili, A. Morsali, Functional group effect of isoreticular metal–organic frameworks on heavy metal ion adsorption, New J. Chem., 42 (2018) 11, 8864–8873, doi:10.1039/C8NJ01150H
16 M. Bouraada, M. Lafjah, M. S. Ouali, L. C. de Menorval, Basic dye removal from aqueous solutions by dodecylsulfate- and dodecyl benzene sulfonate-intercalated hydrotalcite, J. Hazard. Mater., 153 (2008) 3, 911–918, doi:10.1016/j.jhazmat.2007.09.076
Published
2021-09-30
How to Cite
1.
Choi SS, Lee SH, Yun KJ, Jin YM, Lee JH. HIGH ENTROPY ALLOWS A BETTER AFFINITY BETWEEN METAL IONS AND ACTIVATED CARBON FIBRES. MatTech [Internet]. 2021Sep.30 [cited 2021Nov.28];55(5):603–607. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/275

Most read articles by the same author(s)