WARM DEFORMATION BEHAVIOR OF A 65MN SPRING STEEL

  • Peng-fei Zhang
  • De-cheng Wang School of Materials Science Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, P.R. China
  • Peng Cheng China Productivity Center for Machinery, China Academy of Machinery Science and Technology, 2 Shouti Road, Haidian District, Beijing 100044, P.R. China
  • Chen-xi Shao China Productivity Center for Machinery, China Academy of Machinery Science and Technology, 2 Shouti Road, Haidian District, Beijing 100044, P.R. China
  • Jun-ying Zhou China Productivity Center for Machinery, China Academy of Machinery Science and Technology, 2 Shouti Road, Haidian District, Beijing 100044, P.R. China
  • Ji-hua Huang School of Materials Science Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, P.R. China
Keywords: warm deformation process, 65Mn spring steel, processing map

Abstract

The warm deformation behavior of 65Mn spring steel has been carried out by a thermomechanical simulator. The deformation temperatures are in the range of 550 ~ 700℃ and strain rates are in the range of 0.001 ~ 1 s-1. The deformation activation energy is calculated to be 486.829 KJ•mol-1. The strain compensated Arrhenius-type constitutive model was established. The relationship materials constants and strain were fitted with an 8th order polynomial.  It was found that the strain has a significant influence on the instability map. At the strain is 0.3, the optimum flow zone may take place with the deformation temperatures higher than 626 ℃ and strain rate in the range of 0.001 ~ 1 s-1.

References

1. H. Y. Wang, Y. F. Zhao, X. M. Yuan, K. M. Chen, R. H. Xu, Effects of Boronizing Treatment on Corrosion Resistance of 65Mn Steel in two Acid Mediums, Phys. Procedia. 50 (2013) 124-130, doi:10.1016/j.phpro.2013.11.021
2. C. J. Dong, J. H. Zhang, J. Y. Xu, X. C. Song, Y. F. Zhao, Microstructures and properties of electrical discharge strengthened layers on 65Mn steel, Appl. Surf. Sci. 257 (2011) 2843-2849, doi:10.1016/j.apsusc.2010.10.078
3. Y. J. Wang, J. J. Sun, T. Jiang, C. Yang, Q. Tan, S. W. Guo, Y. N. Liu, Super strength of 65Mn spring steel obtained by appropriate quenching and tempering in an ultrafine grain condition, Mater. Sci. Eng. A 754 (2019) 1-8, doi:10.1016/j.msea.2019.03.059
4. P. F. Zhang, D. C. Wang, Y. Guo, P. Cheng, C. X. Shao, N. Lang, X. X. Liu, Fatigue failure analysis and finite element assessment of the twins torsion spring, Eng. Fail. Anal. 122 (2021) 105187, doi:10.1016/j.engfailanal.2020.105187
5. A. Chamanfar, S. M. Chentouf, M. Jahazi, L.-P. Lapierre-Boire, Austenite grain growth and hot deformation behavior in a medium carbon low alloy steel, J Mater. Res. Technol. 9 (2020) 6, 12102-12114, doi:10.1016/j.jmrt.2020.08.114
6. Z. Y. Cai, M. Wan, Z G. Liu, X. D. Wu, B. L. Ma, C. Cheng, Thermal-mechanical behaviors of dual-phase steel sheet under warmforming conditions, Int. J Mech. Sci. 126 (2017) 79-94, doi:10.1016/j.ijmecsci.2017.03.009
7. Z. F. Ren, Z. G. Luo, F. X. Meng, Z. S. Zou, Y. H. Li, A. C. Zhao, H. L. Cui, Physical Simulation on Molten Steel Flow Characteristics of RH Vacuum Chamber with Arched Snorkels, Adv. Mater. Sci. Eng. 3 (2020) 1-10, doi:10.1155/2020/6525096
8. S. J. Li, K. Peng, Y. T. Yang, M. Jin, G. J. Shao, Prediction and Prevention of Overburning Structure during Hot Processing of Chromium Forged Steel, Adv. Mate. Res. 97-101 (2010) 2970-2974, doi:10.4028/www.scientific.net/AMR.97-101.2970
9. A Chaudhari, P Nasker, A Srivastava, Microstructural and ageing response assessment of eutectic Al-Cu alloy due to isothermal heat treatment in semisolid state, Mater. Res. Express, 7 (2020) 1, 016518, doi:10.1088/2053-1591/ab624a
10. X. W. Yang, J. C. Zhu, W. Y. Li. Constitutive behaviour in as quenched Al-5Cu-0.4Mn alloy during hot deformation, Mater. Sci. Tech-lond, 31 (2015) 11, 1320-1328, doi:10.1179/1743284714y.0000000694
11. L. Y. Ye, Y. W. Zhai, L. Y. Zhou, H. Z. Wang, P. Jiang, The hot deformation behavior and 3D processing maps of 25Cr2Ni4MoV steel for a super-large nuclear-power rotor, J Manuf. Processes, 59 (2020) 535-544, doi:10.1016/j.jmapro.2020.09.062
12. M. Ganapathy, N. Li, J. Lin, D. Bhattacharjee. A feasibility study on warm forming of an as-quenched 22MnB5 boron steel, Int. J Light. Mater. Manu. 3 (2020) 277-283, doi:10.1016/j.ijlmm.2020.02.002
13. S. M. Lv, C. L. Jia, X. B. He, Z. P. Wan, Z. Chen, X. H. Qu, Hot deformation behavior of a CuAlMn shape memory alloy, Adv. Eng. Mater. 22 (2020) 6, 2000134, doi:10.1016/j.jallcom.2020.156161
14. Y. Lu, H. B. Xie, J. Wang, Z. Li, F. Lin, J. Han, J. T. Han, Z. Y. Jiang, Characteristic flow behaviour prediction and microstructure analysis of a commercial Si-Cr micro-alloyed spring steel under isothermal compression, Vacuum, 186 (2021) 110066, doi:10.1016/j.vacuum.2021.110066
15. J.W. Zhao, Z. Y. Jiang, G. Q. Zu, W. Du, X. Zhang, L. Z. Jiang, Flow Behaviour and Constitutive Modelling of a Ferritic Stainless Steel at Elevated Temperatures, Met. Mater. Int. 22 (2016) 3, 474-487, doi:10.1007/s12540-016-5541-8
16. M. J. Zhao, Y. Wang, S. F. Yang, J. S. Li, W. Liu, Z. Q. Song, Flow behavior and heat transfer of molten steel in a two-strand tundish heated by plasma, 13 (2021) 561-572, doi:10.1016/j.jmrt.2021.04.069
17. Y. Han, G. Qiao, J. Sun, D. Zou, A comparative study on constitutive relationship of as-cast 904L austenitic stainless steel during hot deformation based on Arrheniustype and artificial neural network models, Comput. Mater. Sci. 67 (2013) 93-103, doi:org/10.1016/j.commatsci.2012.07.028
18. H. Wu, S.P. Wen, H. Huang, X.L. Wu, K.Y. Gao, W. Wang, Z.R. Nie, Hot deformation behavior and constitutive equation of a new type Al-Zn-Mg-Er-Zr alloy during isothermal compression, Mater. Sci. Eng. A 651 (2016) 415-424, doi:10.1016/j.msea.2015.10.122
19. Mirzadeh H, Cabrera JM, Prado JM. Hot deformation behavior of a medium carbon microalloyed steel, Mater. Sci. Eng. A 528 (2011)10-11, 3876-3882, doi:10.1016/j.msea.2011.01.098
20. S.F. Medina, C.A. Hernandez, General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels, Acta Mater. 44 (1996) 137-148. doi:10.1016/1359-6454(95)00151-0
21. L. Y. Ye, Y. W. Zhai, L. Y. Zhou, P. Jiang, Modeling and simulation based on the constitutive equation of 25Cr2Ni4MoV steel for a super-large nuclear-power rotor, Mater. Tehnol. 54 (2020) 1, 91-97, doi:10.17222/mit.2019.136
22. Murty, Svsn, B. N. Rao. Instability map for hot working of 6061 Al-10 vol% metal matrix composite, Journal of Physics D Applied Physics 31. 22 (1999) 3306-3311, doi:10.1088/0022-3727/31/22/020
23. J. Q. Zhang, H. S. Di, K. Mao, X. Y. Wang, Z. J. Han, T. J. Ma, Processing maps for hot deformation of a high-Mn TWIP steel: A comparative study of various criteria based on dynamic materials model, Mater. Sci. Eng. A 587 (2013) 110-122, doi:10.1016/j.msea.2013.08.036
24. H. W. Son, T. K. Jung, J.W. Lee, S. K. Hyun, Hot deformation characteristics of CaO-added AZ31 based on kinetic models and processing maps, Mater. Sci. Eng. A, 695 (2017) 379-85. doi:org/10.1016/j.msea.2017.03.058.
25. I. Sena, R.S. Kottadab, U. Ramamurty, High temperature deformation processing maps for boron modified Ti-6Al-4V alloys, Mater. Sci. Eng. A 527 (2010) 6157-65. doi:org/10.1016/j.msea.2010.06.044.
26. Y. Prasad,Author’s Dynamic materials model: Basis and principles, Metall. Mater. Trans. 27 (1996) 1, 235-236,doi:10.1007/bf02647765
27. F. X. Zhang, D. Liu, Y. H. Yang, C. X. Liu, J. G.Wang, Z. Zhang, Investigation on the influences of δ phase on the dynamic recrystallization of Inconel 718 through a modified cellular automaton model, J Alloy. Compd. 830 (2020) 154590, doi:10.1016/j.jallcom.2020.154590
Published
2021-09-30
How to Cite
1.
ZhangP- fei, WangD- cheng, Cheng P, ShaoC- xi, ZhouJ- ying, HuangJ- hua. WARM DEFORMATION BEHAVIOR OF A 65MN SPRING STEEL. MatTech [Internet]. 2021Sep.30 [cited 2021Nov.28];55(5):717–724. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/193