• Jiang Bin College of Materials Science and Engineering, Shanghai University, Shanghai 200444
  • Zuo Pengpeng College of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
  • Wu Xiaochun College of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
Keywords: stress corrosion; hardness; corrosion rate; hot stamping die steel;


In this paper, the alternate immersion corrosion test of Cr-Mo-V series SDCM steel for hot stamping was carried out, and different stresses were loaded with self-made fixture. The results shown that regardless of hardness and stress, the corrosion mode of the material is uniform corrosion. Stress could significantly increase the corrosion rate, with lower hardness and higher corrosion rate. Because of the existence of Corrosion Removal Layer (CRL), the maximum corrosion pit depth would be reduced. The maximum corrosion pit depth and Corrosion Pit density (CPD, ρv) were used to describe the degree of corrosion damage. From low to high hardness, the CPD ρv and corrosion resistance increased gradually. With the increased of tempering temperature, the hardness decreased, and the percentage of carbide area in the field of view increased from 16.36% to 24.32%. The irregular spherical carbide M23(C, N)6 rich in Cr coarsens and consumes Cr element in the material, which lead to the decrease of corrosion resistance. Through the polarization curve of the dynamic potential, we known that the current density was increased with the hardness decreased, from 28.53 μA/mm2 to 40.93 μA/mm2.


[1] Li S. The Study on microstructure and high temperature friction and wear mechanism of new type hot stamping die steel[D]. Shanghai: Shanghai University, 2017. (Chinese)
[2] G. A. Zhang, Y.F. Cheng, On the fundamentals of electrochemical corrosion of X65 steel in CO-containing formation water in the presence of acetic in petroleum production. Corrosion Science, 2009, 51(1): 87-94. doi: 10.1016/j.corsci.2008.10.013
[3] Caleyo. F, Alfonso. L, Alcantara. J, et al. On the estimation of failure rates of multiple pipeline system. J. Press. Vessel Technol. 2006, 130(2): 1030-1036. doi: 10.1115/1.2894292
[4] Van Boven. G, Chen. W, and Rogge. R, The role of residual stress in neutral pH stress corrosion cracking of pipeline steels. Part I: Pitting and cracking occurrence. Acta Mater., 2007, 55(1): 29–42, 2007. doi: 10.1016/j.actamat.2006.08.037
[5] Jiangxing Yu, Huankun Wang, Yang Yu, et al. Corrosion behavior of X65 pipeline steel: Comparison of wet-dry cycle and full immersion[J]. Corrosion Science, 133(2018): 276-287. doi: 10.1016/j.corsci.2018.01.007
[6] Turnbull. A, Mingard. K, Lord. J. D, et al. Sensitivity of stress corrosion cracking of stainless steel to surface machining and grinding procedure. Corrosion. Science., vol. 53, no. 10, pp. 3398–3415, 2011. doi: 10.1016/j.corsci.2011.06.020
[7] Takano M , Takaku H . Stress Corrosion Cracking of Type 304 Stainless Steel under Residual Stress. Corrosion -Houston Tx-, 2012, 37(3):142-146.
[8] C. Li, Y.Ma, Y. Li, F.Wang. EIS monitoring study of atmospheric corrosion under variable relative humidity. Corrosion Science, 52(11) (2010) 3677-3686. doi: 10.1016/j.corsci.2010.07.018
[9] Kamimura. T, Nasu. S, Segi. T, et al. Corrosion behavior of steel under wet and dry cycles containing Cr3+ ion. Corrosion Science, 45(2003) 1863-1879. doi:10.1016/S0010-938X(03)00023-4
[10] Nishikata. A, Ichihara. Y, Hayashi. Y. Influence of electrolyte layer thickness and pH on the initial stage of the atmospheric corrosion of iron. Journal of the Electrochemical Society. 1997, 144(4) 1244-1252. doi:10.1149/1.1837578
[11] Гутман З М. Mechanochemistry and Corrosion Protection of Metal. Beijing: Sience Press, 1989.
[12] Kim K M, Park J H, Kim H S, et al. Effect of plastic deformation on the corrosion resistance of ferritic stainless steel as a bipolar plate for polymer electrolyte membrane fuel cells. Int J Hydrogen Energy, 2012, 37(10): 8459. doi: 10.1016/j.ijhydene.2012.02.127
[13] Lin C J, Feng Z D, Lin F L, et al. Electrochemical behaviors of the loaded stainless steel in dilute thiosulphate solution. Electrochem, 1995, 1(4): 439.
[14] D. Chastell, P. Doig, P.Flewitt, K. Ryan. The influence of stress on the pitting susceptibility of 12%CrMoV martensitic stainless steel. Corrosion Science, 1979, 19(5): 335-341.
[15] LUO Linghua. Study on stress corrosion cracking behavior in the welded rotor joint of nuclear steam turbine [D]. Shanghai: East China University of Science and Technology, 2017. (Chinese)
[16] Kang Tong, Xi Sheng-qi, Wei Xian-ping. Effect of high-frequency induction hardening on stress corrosion of a 12%Cr martensitic stainless stee[J]l. 2nd Energy Materials Conference, San Diego, CA, Feb 26-Mar 02, 2017. doi:10.1007/978-3-319-52333-0_17
[17] Angang Ning, Wenwen Mao, Xichun Chen. Et al. Precipitation Behavior of Carbides in H13 Hot Work Die Steel and Its Strengthening during Tempering. METAL SCIENCE AND HEAT TREATMENT, 2010, 52(7-8): 393-395. doi: 10.3390/met7030070
[18] Lin, Mu; Zhao, Xingfeng; Han, Lizhan, et al. Microstructural Evolution and Carbide Precipitation in a Heat-Treated H13 Hot Work Mold Steel. METALLOGRAPHY MICROSTRUCTURE AND ANALYSIS, 2016, 5(6):520-527. doi: 10.1007/s13632-016-0318-5
[19] Yeh, Shu-Hung; Chiu, Liu-Ho; Pan, Yeong-Tsuen, et al. Relative Dimensional Change Evaluation of Vacuum Heat-Treated JIS SKD61 Hot-Work Tool Steels[J]. JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2014, 23(6): 2075-2082. doi: 10.1007/s11665-014-0961-4
[20] M.B. Kermani, J.C. Gonzales, C. Linne, M. Dougan, R. Cochrane, Development of Low Carbon Cr-Mo Steels With Exceptional Corrosion Resistance for Oilfield Applications[J], NACE International, 2001 Paper No. 01065.
[21] P.I. Nice, H. Takabe, M. Ueda, The Development and Implementation of a New Alloyed Steel for Oil and Gas Production Wells, NACE International, 2000 Paper No. 154.
[22] Zhou, Qingchun; Wu, Xiaochun; Min, Na. Microstructure evolution and kinetic analysis of DM hot-work die steels during tempering. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528(18): 5696-5700. doi:10.1016/j.msea.2011.04.024
[23] Gu Jinbo, Li Jingyuan, Yanagimoto Jun, et al. Microstructural evolution and mechanical property changes of a new nitrogen-alloyed Cr-Mo-V hot-working die steel during tempering. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 804, 140721. doi: 10.1016/j.msea.2020.140721
[24] Ooi. S.W, Ramjaun. T.I, Hulme-Smith. C, et al. Designing steel to resist hydrogen embrittlement Part 2 – precipitate characterization, Mater. Sci. Technol. (2018) 1–32. doi:10.1080/02670836.2018.1496536
[25] Escriva-Cerdan Clara, Ooi Steve W, Joshi. Guaurav R, et al, Effect of tempering heat treatment on the CO2 corrosion resistance of quench-hardened Cr-Mo low-alloy steels for oil and gas applications. Corrosion Science, 2019, 154: 36-48. doi:10.1016/j.corsci.2019.03.036
[26] Alves VA, Brett CMA, Cavaleiro A. Influence of heat treatment on the corrosion of high speed steel. J. Appl. Electrochem, 2001, 31(1): 65-72. doi: 10.1023/A:1004157623466
[27] OK Duo, Pu YC, Inceclk A. Computation of ultimate strength of locally corroded unstiffened plates under uniaxial compression, Mar. Struct, 20(1-2)(2007) 100-114. doi: 10.1016/j.marstruc.2007.02.003
[28] A. Jarrah, M. Bigerelle, G.Guillemot, et al. A generic statistical methodology to predict the maximum pit depth of a localized corrosion process, Corros. Sci, 2011, 53(8): 2453-2467. doi: 10.1016/j.corsci.2011.03.026
[29] Valor A, Caleyo F, Rivas D a, et al. Stochastic approach to pitting-corrosion-extreme modelling in low-carbon steel, Corros.Sci. 2010, 52(3): 910-915. doi:10.1016/j.corsci.2009.11.011
[30] Zhou L H. Study on microstructure and properties of SDCM hot stamping tool steels[D], Shanghai: Shanghai University, 2015, 37-48. (Chinese)
[31] GB/T 19292.4-2018. Corrosion of metals and alloys-Corrosivity of atmospheres-Part 4: Determination of corrosion rate of standard specimens for the evaluation of corrosivity. (Chinese)
[32] GB/T 19292.4-2018 Corrosion of metals and alloys-Corrosivity of atmospheres-Part 4: Determination of corrosion rate of standard specimens for the evaluation of corrosivity.
[33] Lan TTN, TH\hoa NTP, Nishimura R, et al. Atmospheric corrosion of carbon steel under field exposure in the southern part of Vietnam, Corros, Sci, 2006, 48(1): 179-192. doi:10.1016/j.corsci.2004.11.018
[34] Ma Yhantai, Li ying, Wang Fuhui. The atmospheric corrosion kinetics of low carbon steel in a tropical marine environment, Corros. Sci, 2010, 52(5): 1796-1800. doi:10.1016/j.corsci.2010.01.022
[35] Yan Liu, Zhi-lin Liu, Chen-wei Zhang. Calculation and analysis of valence electron structure of Mo2C and V4C3 in hot working die steel, Journal of Iron and Steel Research International, 2006, 13(5): 50-56. doi: 10.1016/S1006-706X(06)60026-5
[36] Xia S W, Zuo P, Zeng Y, et al. Influence of nickel on secondary hardening of a modified AISI H13 hot work die steel, Materialwissenschaft und Werkstofftechnik,2019, 50(2): 197-203. doi: 10.1002/mawe.201700205
[37] Karaaslan. A, Akca. C. The influence of carbide distribution on the properties of hot work tool steels[J], 18th International Conference on Metallurgy and Materials, Hradec Nad Moravici, CZECH REPUBLIC, may 19-21, 2009, 521-524.
[38] Zeng yan. Research on microstructure evolution behavior of die-casting die steel based on thermo-mechanical loading[D]. Shanghai: Shanghai University, 2019. (Chinese)
[39] Angang Ning, Wenwen Mao, Xichun Chen, et al. Precipitation behavior of carbides in H13 hot work die steel and its strengthening during tempering, Metals, 2017, 7(70): 2-15. doi: 10.3390/met7030070
[40] X.B. Hu, L. Li, X.C. Wu, and M. Zhang, Coarsening Behavior of M23C6 Carbides After Ageing or Thermal Fatigue in AISI H13 Steel with Niobium, International Journal of Fatigue, 2006, 28(3): 175–182. doi: 10.1016/j.ijfatigue.2005.06.042
[41] Jian Wang, Zinuo Xu, Xiaofeng Lu. Effect of the quenching and tempering temperatures on the microstructure and mechanical properties of H13 steel. Journal of materials engineering and performance, 2020, 29(3): 1849-1859. doi:10.1007/s11665-020-04686-0
[42] Jianhui Xie, Ahmet T. Alpas, Derek O. Northwood. The effect of erosion on the electrochemical properties of AISI 1020 steel[J]. Journal of Materials Engineering and Performance, 2003, 12(1): 77-86. doi: 10.1361/105994903770343510
How to Cite
Bin J, Pengpeng Z, XiaochunW. STUDY ON ALTERNATE IMMERSION CORROSION BEHAVIOR AND MECHANISM OF SDCM DIE STEEL FOR HOT STAMPING. MatTech [Internet]. 2021Sep.30 [cited 2021Nov.28];55(5):681–692. Available from: