PREPARATION OF CALCIUM SULFATE HEMIHYDRATE WHISKERS FROM COMPLEX JAROSITE WASTE

  • Hongbin Tan State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang Sichuan 621010, China
  • Xiaoling Ma State Key Laboratory of Environment-friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang Sichuan 621010, China
  • Faqin Dong Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry Education, Southwest University of Science and Technology, Mianyang Sichuan 621010, China
  • Yufeng Li Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry Education, Southwest University of Science and Technology, Mianyang Sichuan 621010, China
  • Jinming Wang Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry Education, Southwest University of Science and Technology, Mianyang Sichuan 621010, China
  • Feihua Yang State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materirals Academy of Science Research, Beijing 100041, China
Keywords: complex jarosite waste, calcium sulfate hemihydrate, whiskers, morphology, impurity ions

Abstract

Complex jarosite waste was obtained from zinc metal hydrometallurgical process, which contained gypsum and ammonium jarosite (NH4Fe3(SO4)2(OH)6). The influence of impurity ions (Fe3+ and NH4+) on the calcium sulfate hemihydrate (HH) morphology was studied using pure gypsum as the raw material, respectively. HH crystals with a high aspect ratio were obtained without the impurity ions. The diameter increased and the aspect ratio of the HH decreased, while the addition of iron sulfate and ammonia sulfate increased. Ammonium iron (NH4+) can be removed by using calcium oxide to decompose the ammonium jarosite in the waste and then to wash the sediment with tap water. The sediment (calcified jarosite sediment) mainly contained CaSO4·2H2O and Fe(OH)3. The influence of cultivating time on HH crystals growth was researched by using the sediment as raw materials. The diameter of the whiskers increased, while the hydrothermal time increased. The whiskers were obtained, with high a aspect ratio (10–60), large diameter (1–4 µm) and smooth surface, after the sediment was treated at 140 °C for 6 h in pH = 5 solution.

References

1 P. K. Senapati, B. K. Mishra, Rheological characterization of concentrated jarosite waste suspensions using Couette & tube rheometry techniques, Powder Technol., 263 (2014), 58–65
2 E. Salinas, A. Roca, M. Cruells, F. Patino, D. A. Cordoba, Characterization and alkaline decomposition–cyanidation kinetics of industrial ammonium jarosite in NaOH media, Hydrometallurgy, 60 (2001) 3, 237–246
3 M. Kerolli-Mustafa, I. Bacic, L. Curkovic, Investigation of jarosite process tailing waste by means of raman and infrared spectroscopy, Materialwiss. Werkst., 44 (2013) 9, 768–773
4 S. H. Ju, Y. F. Zhang, Y. Zhang,P. Y. Xue, Y. H. Wang, Clean hydrometallurgical route to recover zinc, silver, lead, copper, cadmium and iron from hazardous jarosite residues produced during zinc hydrometallurgy, J. Hazard. Mater., 192 (2011) 2, 554–558
5 F. Patiño, M. U. Flores, I. A. Reyes, M. Reyes, J. Hernández, I. Rivera, J. C. Juárez, Alkaline decomposition of synthetic jarosite with arsenic, Geochem. Trans., 14 (2013) 2, 1–9
6 F. Patiño, M. Cruells, A. Roca, E. Salinas, M. Pérez, Kinetics of alkaline decomposition and cyanidation of argentian ammonium jarosite in lime medium, Hydrometallurgy, 70 (2003) 1–3, 153–161
7 X. Feng, Y. Zhang, G. L. Wang, M. Miao, L. Y. Shi, Dual-surface modification of calcium sulfate whisker with sodium hexametaphosphate/silica and use as new water-resistant reinforcing fillers in papermaking, Powder Technol., 271 (2015), 1–6
8 B. H. Guan, L. Yang, H. L. Fu, B. Kong, T. Y. Li, L. C. Yang, -calcium sulfate hemihydrate preparation from FGD gypsum in recycling mixed salt solutions, Chem. Eng. J., 174 (2011) 1, 296–303
9 G. M. Jiang, W. Y. Fu, Y. Z. Wang, X. Y. Liu, Y. X. Zhang, F. Dong, Z. Y. Zhang, X. M. Zhang, Y. M. Huang, S. Zhang, S. H. Lv, Calcium sulfate hemihydrates nanowires: one robust material in separation of water from water-in-oil emulsion, Environ. Sci. Technol., 51 (2017) 18, 10519–10525
10 G. M. Jiang, J. X. Li, Y. L. Nie, S. Zhang, F. Dong, B. H. Guan, Immobilizing water into crystal lattice of calcium sulfate for its separation from water-in-oil emulsion, Environ. Sci. Technol., 50 (2016) 14, 7650–7657
11 K. B. Luo, C. M. Li, L. Xiang, H. P. Li, P. Ling, Influence of temperature and solution composition on the formation of calcium sulfates, Particuology, 8 (2010) 3, 240–244
12 X. Mao, X. Song, G. Lu, Y. Xu, Y. Sun, J. Yu, Effect of additives on the morphology of calcium sulfate hemihydrate: Experimental and molecular dynamics simulation studies, Chem. Eng. J., 278 (2015), 320–327
13 J. W. Mao, G. M. Jiang,Q. S. Chen , B. H. Guan, Influences of citric acid on the metastability of -calcium sulfatehemihydrate in CaCl2 solution, Colloid. Surface. A., 443 (2014), 265–271
14 B. Kong, J. Yu, K. Savino, Y. G. Zhu, B. H. Guan, Synthesis of -calcium sulfate hemihydrate submicron-rods in water/n-hexanol/CTAB reverse microemulsion, Colloid. Surface. A., 409 (2012), 88–93
15 X. L. Mao, X. F. Song, G. M. Lu, Y. Z. Sun, Y. X. Xu, J. G. Yu, Effects of metal Ions on crystal morphology and size of calcium sulfate whiskers in aqueous HCl solutions, Ind. Eng. Chem. Res., 53 (2014) 45, 17625–17635
16 A. Kruger, W. W. Focke, Z. Kwela, R. Fowles, Effect of Ionic Impurities on the Crystallization of Gypsum in Wet-Process Phosphoric Acid, Ind. Eng. Chem. Res., 40 (2001) 5, 1364–1369
17 D. Hasson, J. Addai-Mensah, J. Metcalfe, Filterability of gypsum crystallized in phosphoric acid solution in the presence of ionic impurities, Ind. Eng. Chem. Res., 29 (1990) 5, 867–875
18 G. M. Jiang, H. L. Fu, K. Savino, J. J. Qian, Z. B. Wu, B. H. Guan, Nonlattice cation-SO42– ion pairs in calcium sulfate hemihydrate nucleation, Cryst. Growth. Des., 13 (2013) 11, 5128–5134
19 X. Wang, L. S. Yang, X. F. Zhu, J. K. Yang, Preparation of calcium sulfate whiskers from FGD gypsum via hydrothermal crystallization in the H2SO4-NaCl-H2O system, Particuology, 17 (2014), 42–48
20 Q. Han, K. B. Luo, H. P. Li, L. Xiang. Influence of disodium hydrogen phosphate dodecahydrate on hydrothermal formation of hemihydrate calcium sulfate whiskers, Particuology, 17 (2014), 131–135
21 M. E. Elwood Madden, A. S. Madden, J. D. Rimstidt, S. Zahrai, M. R. Kendall, M. A. Miller, Jarosite dissolution rates and nanoscale mineralogy, Geochim. Cosmochim. Acta., 91 (2012), 306–321
22 F. Li, J. L. Liu, G. Y. Yang, Z. Y. Pan, X. Ni, H. Z. Xu, Q. Huang, Effect of pH and succinic acid on the morphology of -calcium sulfate Hemihydrate synthesized by a salt solution method, J. Cryst. Growth., 374 (2013), 31–36
23 E. T. M. J. Martynowicz, G. J. Witkamp, G. M. Rosmalen, The effect of aluminium fluoride on the formation of calcium sulfate hydrates, Hydrometallurgy, 41 (1996), 171–186
24 L. C. Yang, Z. B. Wu, B. H. Guan, H. L. Fu, Q. Q. Ye, Growth rate of a-calcium sulfate hemihydratein K-Ca-Mg-Cl-H2O systems at elevated temperature, J. Cryst. Growth., 311 (2009) 20, 4518–4524
25 C. Paluszkiewicz, J. Czechowska, A. Slosarczyk, Z. Paszkiewicz, Evaluation of a setting reaction pathway in the novel composite TiHA-CSD bone cement by FT-Raman and FT-IR spectroscopy, J. Mol. Struct., 1034 (2013), 289–295
26 M. K. Sinha, S. K. Sahu, P. Meshram, L. B. Prasad, B. D. Pandey, Low temperature hydrothermal synthesis and characterization of iron oxide powders of diverse morphologies from spent pickle liquor, Powder Technol., 276 (2015), 214–221
27 A. A. Ayachi, H. Mechakra, M. M. Silvan, S. Boudjaadar, S. Achour, Monodisperse -Fe2O3 nanoplatelets: Synthesis and characterization, Ceram. Int., 41 (2015) 2, 2228–2233
Published
2021-06-02
How to Cite
1.
Tan H, Ma X, Dong F, Li Y, Wang J, Yang F. PREPARATION OF CALCIUM SULFATE HEMIHYDRATE WHISKERS FROM COMPLEX JAROSITE WASTE. MatTech [Internet]. 2021Jun.2 [cited 2025Jan.19];55(3):467–473. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/186