DETERMINATION OF THE EFFECT OF TiO2 ON THE DYNAMIC BEHAVIOR OF SCALED CONCRETE CHIMNEY BY OMA

  • Sertaç Tuhta Ondokuz Mayis University, Faculty of Engineering, Department of Civil Engineering, Atakum/Samsun, Turkey
  • Furkan Günday Ondokuz Mayis University, Faculty of Engineering, Department of Civil Engineering, Atakum/Samsun, Turkey
Keywords: Operational Modal Analysis, nanomaterial, EFDD, TiO2

Abstract

In this article, the dynamic parameters (frequencies, mode shapes, damping ratios) of a scaled concrete chimney and the dynamic parameters (frequencies, mode shapes, damping ratios) of the entire outer surface of the 80-micron-thick titanium dioxide are compared using the operational modal analysis method. Ambient excitation was provided from micro tremor ambient vibration data at ground level. Enhanced Frequency Domain Decomposition (EFDD) is used for the output-only modal identification. From this study, very best correlation is found between the mode shapes. Titanium dioxide applied to the entire outer surface of the scaled concrete chimney has an average of 16.34 % difference in frequency values and 9.81 % in damping ratios, proving that nanomaterials can be used to increase the rigidity in chimneys, in other words, for reinforcement. Another important result determined in the study is that it has been observed that the adherence of titanium dioxide and similar nanomaterials mentioned in the introduction to concrete chimney surfaces is at the highest level.

References

1 Ş. D. Akbaş, Modal analysis of viscoelastic nanorods under an axially harmonic load, Advances in Nano Research, 8 (2020) 4, 277–282, doi:10.12989/anr.2020.8.4.277
2 M. Ö. Yayli, F. Yanik, S. Y. Kandemir, Longitudinal vibration of nanorods embedded in an elastic medium with elastic restraints at both ends, Micro & Nano Letters, 10 (2015) 11, 641–644, doi:10.1049/mnl.2014.0680
3 M. Ö. Yayli, A. E. Cercevik, Axial vibration analysis of cracked nanorods with arbitrary boundary conditions, Journal of Vibro¬engineering, 17 (2015) 6, 2907–2921
4 M. Ö. Yayli, Torsion of nonlocal bars with equilateral triangle cross sections, Journal of Computational and Theoretical Nanoscience, 10 (2013) 2, 376–379, doi:10.1166/jctn.2013.2707
5 B. Uzun, M. Ö. Yayli, B. Deliktaş, Free vibration of FG nanobeam using a finite-element method, Micro & Nano Letters, 15 (2020) 1, 35–40, doi:10.1049/mnl.2019.0273
6 M. Ö. Yayli, Torsional vibration analysis of nanorods with elastic torsional restraints using non-local elasticity theory, Micro & Nano Letters, 13 (2018) 5, 595–599, doi:10.1049/mnl.2017.0751
7 H. Kadioglu, M. Ö. Yayli, Buckling analysis of non-local Timo¬shenko beams by using Fourier series, International Journal of Engineering and Applied Sciences, 9 (2017) 4, 89–99, doi:10.24107/ ijeas.362242
8 M. Ö. Yayli, A compact analytical method for vibration of micro-sized beams with different boundary conditions, Mechanics of Advanced Materials and Structures, 24 (2016) 6, 496–508, doi:10.1080/15376494.2016.1143989
9 S. Cherneva, R. Iankov, N. Radic, B. Grbic, M. Datcheva, D. Stoychev, Nano-indentation investigations of the mechanical properties of thin TiO2, WO3 and their composites layers, deposited by spray pyrolysis, Mater. Tehnol., 51 (2017) 1, 75–83, doi:10.17222/ mit.2015.216
10 M. Kulkarni, J. Šepitka, I. Junkar, M. Benčina, N. Rawat, A. Mazare, C. Rode, S. Gokhale, P. Schmuki, M. Daniel, A. Iglic, Mechanical properties of anodic titanium dioxide nanostructures, Mater. Tehnol., 55 (2021) 1, 19–24, doi:10.17222/mit.2020.109
11 M. Mrdak, D. Bajic, D. Veljic, M. Rakin, Mechanical and structural characteristics of atmospheric plasma-sprayed multifunctional TiO2 coatings, Mater. Tehnol., 54 (2020) 6, 807–812, doi:10.17222/ mit.2020.052
12 Z. Rubab, A. Afzal, H. M. Siddiqi, S. Saeed, Preparation, Characterization, and Enhanced Thermal and Mechanical Properties of Epoxy-Titania Composites, Scientific World Journal, 2014 (2014) 5, 1–7, doi:10.1155/2014/515739
13 A. Kocijan, M. Conradi, Č. Donik, Corrosion resistance of super¬hydrophilic and superhydrophobic TiO2/epoxy coatings on AISI 316L stainless steel, Mater. Tehnol., 52 (2018) 4, 383–388, doi:10.17222/mit.2017.191
14 G. Elango, B. Raghunath, K. Palanikumar, Experimental analysis of the wear behavior of hybrid metal-matrix composites of LM25Al with equal volumes of SiC + TiO2, Mater. Tehnol., 48 (2014) 6, 803–810
15 F. Günday, GFRP Retrofitting Effect on the Dynamic Characteristics of Model Steel Structure Using SSI, International Journal of Advance Engineering and Research Development, 5 (2018) 4, 1160–1173
16 F. Günday, OMA of RC Industrial Building Retrofitted with CFRP using SSI, International Journal of Advance Engineering and Research Development, 5 (2018) 5, 759–771
17 K. F. Alvin, K. C. Park, Second-order structural identification procedure via state-space-based system identification, AIAA Journal, 32 (1994) 2, 397–406, doi:10.2514/3.11997
18 D. H. Tseng, R. W. Longman, J. N. Juang, Identification of the structure of the damping matrix in second order mechanical systems, Spaceflight Mechanics, 87 (1994) 1, 167–190
19 F. A. Aliev, V. B. Larin, Optimization of Linear Control Systems: Analytical Methods and Computational Algorithms; CRC Press, New York, USA, 1998
20 L. Ljung, System Identification: Theory for the User; Prentice Hall, New York, USA, 1999
21 H. Lus, M. De Angelis, R. Betti, R. W. Longman, Constructing second-order models of mechanical systems from identified state space realizations, Part I: Theoretical discussions, Journal of Engineering Mechanics, 129 (2003) 5, 477–488, doi:10.1061/(ASCE)0733-¬9399(2003)129:5(477)
22 G. D. Roeck, The state-of-the-art of damage detection by vibration monitoring: the SIMCES experience, Journal of Structural Control, 10 (2003) 2, 127–134, doi:10.1002/stc.20
23 A. Sestieri, S. R. Ibrahim, Analysis of errors and approximations in the use of modal coordinates, Journal of Sound and Vibration, 177 (1994) 2, 145–157, doi:10.1006/jsvi.1994.1424
24 E. Balmes, New results on the identification of normal modes from experimental complex modes, Mechanical Systems and Signal Processing, 11 (1997) 2, 229–243, doi:10.1006/mssp.1996.0058
25 J. S. Bendat, Nonlinear Systems Techniques and Applications; Wiley, New York, USA, 1998
26 T. Marwala, Finite Element Model Updating Using Computational Intelligence Techniques: Applications to Structural Dynamics; Springer, Berlin, 2010
27 R. E. Kalman, A new approach to linear filtering and prediction problems, Journal of Basic Engineering, 82 (1960) 1, 35–45, doi:10.1115/1.3662552
28 M. D. Trifunac, Comparisons between ambient and forced vibration experiments, Earthquake Engineering and Structural Dynamics,1 (1972) 2, 133–150, doi:10.1002/eqe.4290010203
29 S.R. Ibrahim, Random decrement technique for modal identification of structures, Journal of Spacecraft and Rockets, 14 (1977) 11, 696–700, doi:10.2514/3.57251
30 J. N. Juang, Applied System Identification; Prentice Hall, New York, USA, 1994
31 A. A. Kasimzade, S. Tuhta, Application of OMA on the bench-scale earthquake simulator using micro tremor data, Structural Engineering and Mechanics, 61 (2017) 2, 267–274, doi:10.12989/ sem.2017.61.2.267
32 A. A. Kasimzade, S. Tuhta, OMA of model steel structure retrofitted with CFRP using earthquake simulator, Earthquakes and Structures, 12 (2017) 6, 689–697, doi:10.12989/eas.2017.12.6.689
33 S. Tuhta, GFRP retrofitting effect on the dynamic characteristics of model steel structure, Steel and Composite Structures, 28 (2018) 2, 223–231, doi:10.12989/scs.2018.28.2.223
34 S. Tuhta, OMA of model chimney using Bench-Scale earthquake simulator, Earthquakes and Structures, 16 (2019) 3, 321–327, doi:10.12989/eas.2019.16.3.321
35 R. Brincker, L. Zhang, P. Andersen, Modal identification from ambient responses using frequency domain decomposition, Proceedings of the 18th International Modal Analysis Conference (IMAC), February, 2000, San Antonio, Texas, USA
36 N. J. Jacobsen, P. Andersen, R. Brincker, Using enhanced frequency domain decomposition as a robust technique to harmonic excitation in operational modal analysis, International Conference on Noise and Vibration Engineering (ISMA), September, 2006, Leuven, Belgium
37 B. Peeters, System identification and damage detection in civil engineering, Ph.D. Dissertation, Katholieke Universiteit Leuven, Leuven, Belgium, 2000
Published
2021-06-02
How to Cite
1.
Tuhta S, Günday F. DETERMINATION OF THE EFFECT OF TiO2 ON THE DYNAMIC BEHAVIOR OF SCALED CONCRETE CHIMNEY BY OMA. MatTech [Internet]. 2021Jun.2 [cited 2025Jan.19];55(3):459–466. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/185