MECHANICAL BEHAVIOR AND MICROSTRUCTURE EVOLUTION OF THE Ti-3Al-5Mo-4.5V ALLOY AT AN ELEVATED DEFORMATION TEMPERATURE
Abstract
A high-performance titanium alloy requires a fine and homogenous microstructure. The rational deformation process parameters of the Ti-3Al-5Mo-4.5V (TC16) titanium alloy can contribute to achieving this important microstructure. Hot-compression experiments were performed at temperatures in the range 100–800 °C and at strain rates of 0.1 s–1 to 10.0 s–1. The effects of deformation temperatures and deformation rates on the mechanical behaviour and microstructure evolution were analysed and discussed. The softening mechanism of the Ti-3Al-5Mo-4.5V alloy at an elevated deformation temperature was revealed. Experimental results showed that 500 °C is the critical deformation temperature to distinguish the warm-deformation region of 100–400 °C and the hot-deformation region of 500–800 °C. The softening mechanism is dominated by -phase spheroidization in the temperature range 100–400 °C with a higher strain rate of 10.0 s–1. The softening mechanism is dominated by a local temperature rise in the temperature range 500–800 °C with a lower strain rate of 0.1 s–1.
References
2 S. Fujishiro, D. Eylon, T. Kishi, Metallurgy and Technology of Practical Titanium Alloys, TMS, 1994
3 X. Zhao, Y. Qing, C. Bai, Titanium Alloy and its Application, Chemical Industry Press, Beijing, 2005
4 B. F. Wang, Adiabatic shear band in a Ti-3Al-5Mo-4.5V Titanium alloy, Journal of Materials Science, 43 (2008), 1576–1582, doi:10.1007/s10853-007-2330-2
5 X. W. Li, M. X. Lu, A. X. Sha, L. Zhang, The tensile deformation behavior of Ti–3Al–4.5V–5Mo titanium alloy, Materials Science & Engineering A, 490 (2008) 1–2, 193–197, doi:10.1016/j.msea.2008. 01.086
6 C. Wu, Effects of Heat Upset on Structure and Properties of TC16 Titanium Alloy, Aerospace Materials & Technology, 76 (2007) 3, 61–64, doi:10.3969/j.issn.1007-2330.2007.03.018
7 H. Song, G. Q. Wu, Z. G. Zhang, Effects of microstructural variations on dynamic compressive deformation behavior of Ti-3AI-5Mo-5V alloy, Materials Letters, 60 (2006) 28, 3385–3389, doi:10.1016/j.matlet.2006.03.088
8 W. Gao, Q. Fen, Z. Zhi, Microstructure Evolution in the Process of Hotworking the TC16 Titanium Alloy Bar, Special Steel Technology, 24 (2018) 2, 36–38, doi:10.16683/J.CNKI.ISSN1674-¬0971.2018. 1026
9 M. Shen, Y. Huo, T. He, Y. Xue, X. Jiang, Comparison of two constitutive modelling methods in application of TC16 alloy at the elevated deformation temperature, Materials Today Communications, 24 (2020), doi:10.1016/j.mtcomm.2020.101053
10 S. Zherebtsov, M. Murzinova, G. Salishchev, S. L. Semiatin, Spheroidization of the lamellar microstructure in Ti–6Al–4V alloy during warm deformation and annealing, Acta Materialia, 59 (2011) 10, 4138–4150, doi:10.1016/j.actamat.2011.03.037
11 B. R, W. G, Materials Properties Handbook: Titanium Alloy, ASM International, OH, Materials Park, 1994
12 H. Zhang, G. Lin, D. Peng, L. Yang, Q. Lin, Dynamic and static softening behaviors of aluminum alloys during multistage hot deformation, Journal of Materials Processing Technology, 148 (2004) 2, 245–249, doi:10.1016/j.jmatprotec.2003.12.020
13 R. Ding, Z. Guo, A. Wilson, Microstructural evolution of a Ti–6Al–4V alloy during thermomechanical processing, Materials Science & Engineering A, 327 (2002) 2, 233–245, doi:10.1016/ S0921-¬5093(01)01531-3
14 M. Li, H. Li, J. Luo, Precision forging of titanium alloy, Science Press, Beijing, 2016
15 J. Luo, J. Gao, L. Li, M. Li, The flow behavior and the deformation mechanisms of Ti–6Al–2Zr–2Sn–2Mo–1.5Cr–2Nb alloy during isothermal compression, Journal of Alloys and Compounds, 667 (2016), 44–52, doi:10.1016/j.jallcom.2016.01.164
16 J. Li, B. Wang, H. He, F. Shuang, J. Shen, Unified modelling of the flow behaviour and softening mechanism of a TC6 titanium alloy during hot deformation, Journal of Alloys and Compounds, 748 (2018), 1031–1043, doi:10.1016/j.jallcom.2018.03.120
17 L. Li, M. Li, Evolution characterization of lamellae during isothermal compression of TC17 alloy with colony- microstructure, Materials Science & Engineering A, 712 (2017), 637–644, doi:10.1016/ j.msea.2017.12.023
18 Z. Yuan, F. Li, H. Qiao, M. Xiao, J. Cai, J. Li, A modified constitutive equation for elevated temperature flow behavior of Ti–6Al–4V alloy based on double multiple nonlinear regression, Materials Science & Engineering A, 578 (2013), 260–270, doi:10.1016/j.msea. 2013.04.091
19 W. S. Lee, C. Y. Liu, The effects of temperature and strain rate on the dynamic flow behaviour of different steels, Materials Science & Engineering A, 426 (2006) 1–2, 101–113, doi:10.1016/j.msea.2006. 03.087
20 X. G. Fan, H. Yang, P. F. Gao, Prediction of constitutive behavior and microstructure evolution in hot deformation of TA15 titanium alloy, Materials & Design, 51 (2013), 34–42, doi:10.1016/j.matdes.2013. 03.103
21 Y. Huo, T. He, S. Chen, R. Wu, Mechanical Behavior and Microstructure Evolution of Bearing Steel 52100 During Warm Compression, Jom, 70 (2018), 1112–1117, doi:10.1007/s11837-¬018-¬2914-0