HOT EXTRUSION FOLLOWED BY A HOT ECAP CONSOLIDATION COMBINED TECHNIQUE IN THE PRODUCTION OF BORON CARBIDE (B4C) REINFORCED WITH ALUMINIUM CHIPS (AA6061) COMPOSITE
Abstract
A new and promising MMC approach to the reduction of pollution, greenhouse effects, and emissions is to develop a technology related to materials composite forming. Hot extrusion followed by hot ECAP is a combination of solid-state recycling method (direct recycling) that consists of chip preparations, cold compaction, and hot extrusion, followed by the ECAP process. The developed process is used to consolidate the chips for direct chip recycling purposes without the remelting phase. In this study, finished or semi-finished products from B4C-reinforced particles and AA6061 aluminium chips were produced. The samples made by hot extrusion were compared with samples obtained from hot extrusion followed by the hot ECAP process in terms of mechanical properties. Additional plastic deformation by hot ECAP after hot extrusion significantly increased the mechanical properties of the MMC compared with the samples obtained from the hot extrusion only. The density and microstructure of the samples were also determined.
References
2 A. E. Tekkaya, M. Schikorra, D. Becker, D. Biermann, N. Hammer, K. Pantke, Hot profile extrusion of AA-6060 aluminum chips, J. Mater. Process. Technol., 209 (2009), 3343–3350, doi:10.1016/ j.jmatprotec.2008.07.047
3 S. Y. Chang, K. S. Lee, S. K. Ryu, K. T. Park, D. H. Shin, Effect of equal channel angular pressing on the distribution of reinforcements in the discontinuous metal matrix composites, Mater. Trans., 43 (2002), 757–761
4 R. Chiba, M. Yoshimura, Solid-state recycling of aluminium alloy swarf into c-channel by hot extrusion, J. Manuf. Process., 17 (2015), 1–8, doi:10.1016/j.jmapro.2014.10.002
5 S. Shamsudin, M. Lajis, Z. W. Zhong, Evolutionary in Solid State Recycling Techniques of Aluminium: A review, Procedia CIRP, 40 (2016), 256–261. doi:10.1016/j.procir.2016.01.117
6 D. R. Fang, Z. F. Zhang, S. D. Wu, C. X. Huang, H. Zhang, N. Q. Zhao, J. J. Li, Effect of equal channel angular pressing on tensile properties and fracture modes of casting Al-Cu alloys, Mater. Sci. Eng. A., 426 (2006) 305–313, doi:10.1016/j.msea.2006.04.044
7 J. Fogagnolo, F. Velasco, M. Robert, J. Torralba, Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powders, Mater. Sci. Eng. A., 342 (2003), 131–143, doi:10.1016/S0921-5093(02)00246-0
8 S. Al-alimi, M .A. Lajis, S. Shamsudin, B. L. Chan, A. E. Ismail, N. M. Sultan, Development of Metal Matrix Composites and Related Forming Techniques by Direct Recycling of Light Metals: A Review, 1 (2020), 144–171
9 A. V. Muley, S. Aravindan, I. P. Singh, Nano and hybrid aluminum based metal matrix composites: an overview, Manuf. Rev., 2 (2015), 15, doi:10.1051/mfreview/2015018
10 V. Güley, A. Güzel, A. Jäger, N. Ben Khalifa, A. E. Tekkaya, W. Z. Misiolek, Effect of die design on the welding quality during solid state recycling of AA6060 chips by hot extrusion, Mater. Sci. Eng. A., 574 (2013) 163–175, doi:10.1016/j.msea.2013.03.010
11 J. Gronostajski, A. Matuszak, Recycling of metals by plastic deformation: an example of recycling of aluminium and its alloys chips, J. Mater. Process. Technol., 92–93 (1999), 35–41, doi:10.1016/S0924-¬0136(99)00166-1
12 R. Guluzade, A. Avci, M. Turan Demirci, Ö. Faruk Erkendirci, Fracture toughness of recycled AISI 1040 steel chip reinforced AlMg1SiCu aluminum chip composites, Mater. Des., 52 (2013), 345–352, doi:10.1016/j.matdes.2013.05.025
13 H. Zare, M. Jahedi, M.R. Toroghinejad, M. Meratian, M. Knezevic, Compressive, shear, and fracture behavior of CNT reinforced Al matrix composites manufactured by severe plastic deformation, Mater. Des., 106 (2016), 112–119, doi:10.1016/j.matdes.2016.05.109
14 M. Haase, A. E. Tekkaya, Recycling of aluminum chips by hot extrusion with subsequent cold extrusion, Procedia Eng., 81 (2014), 652–657, doi:10.1016/j.proeng.2014.10.055
15 C. Nie, J. Gu, J. Liu, D. Zhang, Production of Boron Carbide Reinforced 2024 Aluminum Matrix Composites by Mechanical Alloying, Composites, 48 (2007), 990–995, doi:10.2320/matertrans.48.990
16 M. Jahedi, B. Mani, S. Shakoorian, E. Pourkhorshid, M. Hossein Paydar, Deformation rate effect on the microstructure and mechanical properties of Al-SiCP composites consolidated by hot extrusion, Mater. Sci. Eng. A., 556 (2012), 23–30, doi:10.1016/j.msea.2012. 06.054
17 B. Mani, M. H. Paydar, Application of forward extrusion-equal channel angular pressing (FE-ECAP) in fabrication of aluminum metal matrix composites, J. Alloys Compd., 492 (2010), 116–121, doi:10.1016/j.jallcom.2009.11.098
18 R. Z. Valiev, T. G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci., 51 (2006), 881–981, doi:10.1016/j.pmatsci.2006.02.003
19 Y. Nakayama, T. Miyazaki, Effect of preheating temperature on ECAP formability of AC4CH aluminum casting alloy, Mater. Trans., 51 (2010), 918–924, doi:10.2320/matertrans.L-M2010805
20 D. M. Jafarlou, E. Zalnezhad, M. A. Hassan, M. A. Ezazi, N. A. Mardi, A. M. S. Hamouda, M. Hamdi, G. H. Yoon, Severe plastic deformation of tubular AA 6061 via equal channel angular pressing Severe plastic deformation of tubular AA 6061 via equal channel angular pressing, JMADE., 90 (2015), 1124–1135, doi:10.1016/j.matdes. 2015.11.026
21 J. B. Fogagnolo, E. M. Ruiz-Navas, M. A. Simón, M. A. Martinez, Recycling of aluminium alloy and aluminium matrix composite chips by pressing and hot extrusion, J. Mater. Process. Technol., 143–144 (2003), 792–795, doi:10.1016/S0924-0136(03)00380-7
22 K. O. Sanusi, O. D. Makinde, G. J. Oliver, Equal channel angular pressing technique for the formation of ultra-fine grained structures, S. Afr. J. Sci., 108 (2012), 1–7, doi:10.4102/sajs.v108i9/10.212
23 M. Nagaral, Effect of Al2O3 Particles on Mechanical and Wear Properties of 6061al Alloy Metal Matrix Composites, J. Mater. Sci. Eng., 2 (2013), 2–5, doi:10.4172/2169-0022.1000120
24 R. Derakhshandeh-Haghighi, S. A. Jenabali Jahromi, The Effect of Multi-pass Equal-Channel Angular Pressing (ECAP) for Consolidation of Aluminum-Nano Alumina Composite Powder on Wear Resistance, J. Mater. Eng. Perform., 25 (2016), 687–696, doi:10.1007/ s11665-¬016-1888-8
25 G. Ramu, R. Bauri, Effect of equal channel angular pressing (ECAP) on microstructure and properties of Al-SiCp composites, Mater. Des., 30 (2009), 3554–3559, doi:10.1016/j.matdes.2009.03.001
26 M. Snajdar-Musa, Z. Schauperl, ECAP - new consolidation method for production of aluminium matrix composites with ceramic reinforcement, Process. Appl. Ceram., 7 (2013) 63–68, doi:10.2298/ PAC1302063S
27 T. Lokesh, U. S. Mallik, Effect of Equal Channel Angular Pressing on the Microstructure and Mechanical Properties of Al6061-SiCP Composites, IOP Conf. Ser. Mater. Sci. Eng., 149 (2016), 012119, doi:10.1088/1757-899X/149/1/012119
28 R. D. Haghighi, S. A. J. Jahromi, A. Moresedgh, M. T. Khorshid, A comparison between ECAP and conventional extrusion for consolidation of aluminum metal matrix composite, J. Mater. Eng. Perform., 21 (2012), 1885–1892, doi:10.1007/s11665-011-0108-9
29 H. Zare, M. Jahedi, M. Reza, Materials Science & Engineering A Microstructure and mechanical properties of carbon nanotubes reinforced aluminum matrix composites synthesized via equal-channel angular pressing, Mater. Sci. Eng. A., 670 (2016), 205–216, doi:10.1016/j.msea.2016.06.027
30 V. Karoutsos, Scanning Probe Microscopy: Instrumentation and Applications on Thin Films and Magnetic Multilayers Scanning Probe Microscopy: Instrumentation and Applications on Thin Films and Magnetic Multilayers, (2014), doi:10.1166/jnn.2009.1474
31 R. K. Islamgaliev, M. A. Nikitina, A. V. Ganeev, M. V. Karavaeva, Effect of grain refinement on mechanical properties of martensitic steel, IOP Conf. Ser. Mater. Sci. Eng., 194 (2017), doi:10.1088/ 1757-¬899X/194/1/012025
32 A. Bonyár, AFM characterization of the shape of surface structures with localization factor, Micron, 87 (2016), 1–9, doi:10.1016/j.micron.2016.05.002