HIGH-TEMPERATURE OXIDATION BEHAVIOR OF AN N5 NANOCRYSTALLINE COATING DEPOSITED BY ESD ON A NI-BASED SINGLE-CRYSTAL SUPERALLOY

  • Rongyan Wang Shenyang Ligong University, School of Equipment Engineering, No. 6 Nanping Central Road, Hunnan New District, Shenyang 110159, Liaoning, China
  • Quan Liu 1Shenyang Ligong University, School of Equipment Engineering
  • Meng Wang Shenyang Ligong University, School of Equipment Engineering, No. 6 Nanping Central Road, Hunnan New District, Shenyang 110159, Liaoning, China
  • Xudong Lu Shenyang Ligong University, School of Equipment Engineering, No. 6 Nanping Central Road, Hunnan New District, Shenyang 110159, Liaoning, China
  • Cean Guo Shenyang Ligong University, School of Materials Science and Engineering, No. 6 Nanping Central Road, Hunnan New District, Shenyang 110159, Liaoning, China
  • Jian Zhang Shenyang Ligong University, School of Materials Science and Engineering, No. 6 Nanping Central Road, Hunnan New District, Shenyang 110159, Liaoning, China
Keywords: high-temperature oxidation, nanocrystalline coating, electrospark deposition

Abstract

An N5 nanocrystalline coating was prepared on a Ni-based single-crystal superalloy by electrospark deposition. The morphologies, chemical composition, and phase constitution of the coating were analyzed by scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS) and X-ray diffraction (XRD), respectively. The high-temperature oxidation resistance of the substrate and coating at 1100℃ was tested in a static isothermal oxidation experiment. The results show that the electrospark deposition coating with columnar crystal structure is composed of nanocrystalline; there is no elemental interdiffusion between the substrate and the coating, which effectively avoids decreasing the mechanical properties of the substrate alloy due to the interdiffusion. Migration and aggregation of a reactive element, Ta, in the nanocrystalline coating substantially improves oxide film adhesion

References

1 Z. H. Liu, H. B. Yang, Y. F. Jia, X. Shu, Heat protective properties of NiCrAlY/Al2O3 gradient ceramic coating fabricated by plasma spraying and slurry spraying, Surface Coatings Technology, 327 (2017), 1-8, doi: 10.1016/j.surfcoat.2017.07.075
2 Y.M. Liao, B. Zhang, M.H. Chen, M. Feng, J.L. Wang, S.L. Zhu, F.H. Wang, Self-healing metal-enamel composite coating and its protection for TiAl alloy against oxidation under thermal shock in NaCl solution, Corrosion Science, 167 (2020), 108526, doi: 10.1016/j.corsci.2020.108526
3 J. Sun, H. Xiao, W. Li, S. B. Liu, L. B. Fu, S. M. Jiang, Microstructure and oxidation behaviour of Pt modified NiCrAlYSi coating on a Ni-based single crystal superalloy, Surface Coatings Technology, 399 (2020), 126164, doi: 10.1016/j.surfcoat.2020.126164
4 D. Y. Liu, W. Gao, Z. W. Li, H. F. Zhang, Z. Q. Hu, Electro-spark deposition of Fe-based amorphous alloy coatings, Materials Letters, 61 (2007), 165-167, doi:10.1016/j.matlet.2006.04.042
5 Y. J. Xie, M. C. Wang, Isothermal oxidation behavior of electrospark deposited MCrAlX-type coatings on a Ni-based superalloy, Journal of Alloys Compounds, 480 (2009), 454-461, doi: 10.1016/j.jallcom.2009.01.100
6 H. Y. Lou, F. H. Wang, B. J. Xia, L. X. Zhang, High-Temperature Oxidation Resistance of Sputtered Micro-Grain Superalloy K38G, Oxidation of Metals, 38 (1992), 299-307
7 J. L. Wang, M. H. Chen, S. L. Zhu, F. H. Wang, Ta effect on oxidation of a nickel-based single-crystal superalloy and its sputtered nanocrystalline coating at 900-1100°C, Applied Surface Science, 345 (2015), 194-203, doi: 10.1016/j.apsusc.2015.03.157
8 Y. D. Wang, Y. P. Zhang, G. Liang, Q. L. Ding, Low temperature formation of aluminide coatings on the electrodeposited nanocrystalline Ni and its oxidation resistance with La2O3/CeO2 nanoparticle dispersion, Vacuum 173 (2020), 109148, doi:10.1016/j.vacuum.2019.109148
9 C. A. Guo, T. Liang, F. S. Lu, Z. G. Liang, S. Zhao, J. Zhang, ISOTHERMAL OXIDATION BEHAVIOR OF ELECTROSPARK DEPOSITED NiCrAlY COATINGS ON A NI-BASED SINGLE-CRYSTAL SUPERALLOY, Materials and technology, 53 (2019), 389-394, doi:10.17222/mit.2018.210
10 S. J. Geng, F. H. Wang, S. L. Zhu, High-Temperature Oxidation Behavior of Sputtered IN 738 Nanocrystalline Coating, Oxidation of Metals, 57 (2002), 3-4, 231-243
11 J. M. Niu, W. Wang, S. L. Zhu, F. H. Wang, The scaling behavior of sputtered Ni3Al coatings with and without Pt modification, Corrosion Science, 58 (2012), 115-120, doi: 10.1016/j.corsci.2012.01.008
12 J. L. Wang, M. H. Chen, Y. X. Cheng, L. L. Yang, Z. B. Bao, L. Liu, S. L. Zhu, F. H. Wang, Hot corrosion of arc ion plating NiCrAlY and sputtered nanocrystalline coatings on a nickel-based single-crystal superalloy, Corrosion Science, 123 (2017), 27-39, doi:10.1016/j.corsci.2017.04.004
13 B. A. Pint, Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect, Oxidation of Metals, 45 (1996), 1-37
14 S. J. Park, S. M. Seo, Y. S. Yoo, H. W. Jeong, H. J. Jang, Effects of Al and Ta on the high temperature oxidation of Ni-based superalloys, Corrosion Science, 90 (2015), 305-312, doi: 10.1016/j.corsci.2014.10.025
15 R. R. Chen, X. Gong, Y. Wang, G. Qin, N. N. Zhang, Y. Q. Su, H. S. Ding, J. J. Guo, H. Z. Fu, Microstructure and oxidation behaviour of plasma-sprayed NiCoCrAlY coatings with and without Ta on Ti44Al6Nb1Cr alloys, Corrosion Science, 136 (2018), 244-254, doi:10.1016/j.corsci.2018.03.008
16 B. H. Han, Y. Ma, H. Peng, L. Zheng, H. B. Guo, Effect of Mo, Ta, and Re on high-temperature oxidation behavior of minor Hf doped β-NiAl alloy, Corrosion Science, 102 (2016), 222-232, doi: 10.1016/j.corsci.2015.10.011
17 A. Sato, Y. L. Chiu, R. C. Reed, Oxidation of nickel-based single-crystal superalloys for industrial gas turbine applications, Acta Materialia, 59 (2011), 225-240, doi: 10.1016/j.actamat.2010.09.027.
18 H. B. Guo, Y. J. Cui, H. Peng, S. K. Gong, Improved cyclic oxidation resistance of electron beam physical vapor deposited nano-oxide dispersed β-NiAl coatings for Hf-containing superalloy, Corrosion Science, 52 (2010), 1440-1446, doi: 10.1016/j.corsci.2010.01.009
19 P. Wang, S. J. Deng, Y. D. He, C. X. Liu, J. Zhang, Oxidation and hot corrosion behavior of Al2O3/YSZ coatings prepared by cathode plasma electrolytic deposition, Corrosion Science, 109 (2016), 13-21, doi: 10.1016/j.corsci.2016.03.017
20 L. L. Yang, M. H. Chen, J. L. Wang, Z. B. Bao, S. L. Zhu, F. H. Wang, Diffusion of Ta and its influence on oxidation behavior of nanocrystalline coatings with different Ta, Y and Al contents, Corrosion Science, 126 (2017), 344-355, doi: 10.1016/j.corsci.2017.07.017
21 G. H. Meng, H. Liu, M. J. Liu, To. Xu, G. J. Yang, C. X. Li, C. J. Li, Highly oxidation resistant MCrAlY bond coats prepared by heat treatment under low oxygen content, Surface Coatings Technology, 368 (2019), 192-201, doi: 10.1016/j.surfcoat.2019.04.046
22 K. Messaoudi, A. M. Huntz, B. Lesage, Diffusion and growth mechanism of Al2O3 scales on ferritic Fe-Cr-Al alloys, Materials Science and Engineering: A, 247 (1998) 248-262, doi: 10.1016/S0921-5093(97)00711-9
Published
2021-09-30
How to Cite
1.
Wang R, Liu Q, Wang M, Lu X, Guo C, Zhang J. HIGH-TEMPERATURE OXIDATION BEHAVIOR OF AN N5 NANOCRYSTALLINE COATING DEPOSITED BY ESD ON A NI-BASED SINGLE-CRYSTAL SUPERALLOY. MatTech [Internet]. 2021Sep.30 [cited 2021Nov.28];55(5):733–740. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/171