• Ali A. Al- Allaq Helwan University
  • Jenan S. Kashan
  • Mohamed T. El-Wakad
  • Ahmed M. Soliman
Keywords: Bone tissue engineering; Biomaterials; Bone scaffold


In this investigation, multi-wall carbon nanotubes (MWCNT) with various percentages (0.6%, 1%, 1.4%, 2%) were combined into   ​and High-density polyethylene HDPE (60) wt. % and hydroxyapatite (40) wt. % to form biocomposite using hot-press techniques. The surface topography by AFM images illustrates differences in the roughness of the sample's surface with different adding percentages of MWCNT. The DSC technique exhibits the effect of adding MWCNT in different percentages with the degree of crystallinity, which its effect on mechanical properties for samples. The in vitro bioactivity was investigated by immersion the samples in Ringer's solution as simulated body fluid (SBF) at (0, 3, 6, 9, 12) days (after immersing). The FE-SEM and EDx image explained the apatite layers formation on the sample's surface after 3 days immersed in Ringer solution. Based on XRD Technique, after immersion days in the Ringer solution, the crystallographic structure of hydroxyapatite is formed, forming the monetite.  ​The enhancement of bioactivity has been shown during the incorporation of MWCNT into HA/HDPE composite. These results exhibited excellent indications of biocompatibility properties with the possibility of making promising biomaterials for making bone substitute applications.                                                                                                       


1 A. A. Nather, Bone grafts and bone substitutes: basic science and clinical applications, World Scientific, (2005), doi:10.1142/5695

2 T. Kokubo, H. M. Kim, M. Kawashita, Novel bioactive materials with different mechanical properties, Biomaterials, 24 (2003) 13, 2161–2175, doi:10.1016/s0142-9612(03)00044-9

3 R. Dimitriou, E. Jones, D. McGonagle, P. V. Giannoudis, Bone regeneration: current concepts and future directions. BMC Med., 9 (2011) 1, 1–10, doi:10.1186/1741-7015-9-66

4 R. Z. LeGeros, Properties of osteoconductive biomaterials: calcium phosphates, Clin. Orthop. Relat. Res., 395 (2002), 81–98, doi:10.1097/00003086-200202000-00009

5 L. L. Hench, An Introduction to Bioceramics, World scientific, 1 (1993), doi:10.1142/p884

6 S. Nath, S. Bodhak, B. Basu, Tribological investigation of novel HDPE-HAp-Al2O3 hybrid biocomposites against steel under dry and simulated body fluid condition, J. Biomed. Mater. Res. Part A: An Off. J. Soc. Biomater., Japanese Soc. Biomater., Aust. Soc. Biomater., Korean Soc. Biomater., 83 (2007) 1, 191–208, doi:10.1002/jbm.a.31203

7 K. S. Ibrahim, Carbon nanotubes-properties and applications: a review, Carbon Lett., 14 (2013), 131–144, doi:10.5714/CL.2013. 14.3.131

8 A. T. Mouad, S. H. Ahmad, Characterization and Morphology of Modified Multi-Walled Carbon Nanotubes Filled Thermoplastic Natural Rubber (TPNR) Composite, In: Syntheses and Applications of Carbon Nanotubes and Their Composites, Intech Open, 2013, doi:10.5772/50726

9 H. Fouad, R. Elleithy, S. M. Al-Zahrani, M. A. Ali, Characterization and processing of high density polyethylene/carbon nano-composites, Mater. Des., 32 (2011) 4, 1974–1980, doi:10.1016/j.matdes. 2010.11.066

10 K. Lawton, H. Le, C. Tredwin, R. D. Handy, Carbon Nanotube Reinforced Hydroxyapatite Nanocomposites as Bone Implants: Nanostructure, Mechanical Strength and Biocompatibility, Int. J. Nanomedicine, 14 (2019), 7947–7962, doi:10.2147/IJN.S218248

11 A. A. Al-allaq, J. S. Kashan, M. T. El-Wakad, A. M. Soliman, Multiwall carbon nanotube reinforced HA/HDPE biocomposite for bone reconstruction, Periodicals of Engineering and Natural Sciences (PEN), 9 (2021) 2, 930–939, doi:10.21533/pen.v9i2.1946

12 R. Ma, D. Guo, Evaluating the bioactivity of a hydroxyapatite-incorporated polyetheretherketone biocomposite, J. Orthop. Surg. Res., 14 (2019) 1, 1–13, doi:10.1186/s13018-019-1069-1

13 J. Xu, X. Hu, S. Jiang, Y. Wang, R. Parungao, S. Zheng, Y. Nie, T. Liu, K. Song, The Application of Multi-Walled Carbon Nanotubes in Bone Tissue Repair Hybrid Scaffolds and the Effect on Cell Growth In Vitro, Polymers (Basel), 11 (2019) 2, 230, doi:10.3390/ polym11020230

14 Y. Akgul, H. Ahlatci, M. E. Turan, H. Simsir, M. A. Erden, Y. Sun, A. Kilic, Mechanical, tribological, and biological properties of carbon fiber/hydroxyapatite reinforced hybrid composites, Polym. Compos., (2020), doi:10.1002/pc.25546

15 C. Liang, Y. Luo, G. Yang, D. Xia, L. Liu, X. Zhang, H. Wang, Graphene oxide hybridized nHAC/PLGA scaffolds facilitate the proliferation of MC3T3-E1 cells, Nanoscale Res. Lett., 13 (2018) 1, 1–10, doi:10.1186/s11671-018-2432-6

16 A. Zareidoost, M. Yousefpour, B. Ghaseme, A. Amanzadeh, The relationship of surface roughness and cell response of chemical surface modification of titanium, J. Mater. Sci. Mater. Med., 23 (2012) 6, 1479–1488, doi:10.1007/s10856-012-4611-9

17 A. B. Faia-Torres, S. Guimond-Lischer, M. Rottmar, M. Charnley, T. Goren, K. Maniura-Weber, N. D. Spencer, R. L. Reis, M. Textor, N. M. Neves, Differential regulation of osteogenic differentiation of stem cells on surface roughness gradients, Biomaterials, 35 (2014) 33, 9023–9032, doi:10.1016/j.biomaterials.2014.07.015

18 A. Yeo, W. J. Wong, H. H. Khoo, S. H. Teoh, Surface modification of PCL-TCP scaffolds improve interfacial mechanical interlock and enhance early bone formation: An in vitro and in vivo characterization, J. Biomed. Mater. Res. Part A, An Off. J. Soc. Biomater., Japanese Soc. Biomater., Aust. Soc. Biomater., Korean Soc. Biomater., 92 (2010) 1, 311–321, doi:10.1002/jbm.a.32366

19 O. Y. Alothman, F. N. Almajhdi, H. Fouad, Effect of gamma radiation and accelerated aging on the mechanical and thermal behavior of HDPE/HA nano-composites for bone tissue regeneration, Biomed. Eng. Online, 12 (2013) 1, 1–15, doi:10.1186/1475-925X-12-95

20 C. Zhu Liao, K. Li, H. Man Wong, W. Yin Tong, K. Wai Kwok Yeung, S. Chin Tjong, Novel polypropylene biocomposites reinforced with carbon nanotubes and hydroxyapatite nanorods for bone replacements, Mater. Sci. Eng. C, 33 (2013) 3, 1380–1388, doi:10.1016/j.msec.2012.12.039

21 L. Amoroso, E. L. Heeley, S. N. Ramadas, T. McNally, Crystal¬lisation behaviour of composites of HDPE and MWCNTs: The effect of nanotube dispersion, orientation and polymer deformation, Polymer (Guildf), 201 (2020), 122587, doi:10.1016/j.polymer.2020. 122587

22 A. B. Kaganj, A. M. Rashidi, R. Arasteh, S. Taghipoor, Crys¬tallisation behaviour and morphological characteristics of poly (propylene)/multi-walled carbon nanotube nanocomposites, J. Exp. Nanosci., 4 (2009) 1, 21–34, doi:10.1080/17458080802688427

23 N. Dusunceli, O. U. Colak, Modelling effects of degree of crystallinity on mechanical behavior of semicrystalline polymers, Int. J. Plast., 24 (2008) 7, 1224–1242, doi:10.1016/j.ijplas.2007.09.003

24 H. Balakrishnan, M. R. Husin, M. U. Wahit, M. R. Abdul Kadir, Preparation and characterization of organically modified montmorillonite-filled high density polyethylene/hydroxyapatite nanocom¬posites for biomedical applications, Polym. Plast. Technol. Eng., 53 (2014) 8, 790–800, doi:10.1080/03602559.2014.886043

25 M. R. Husin, M. U. Wahit, M. R. Abdul Kadir, W. A. Wan Abd. Rahman, Effect of hydroxyapatite reinforced high density polyethylene composites on mechanical and bioactivity properties, Key Engineering Materials, 471 (2011), 303–308, doi:10.4028/www.scientific.net/KEM.471-472.303

26 R. A. Sousa, R. L. Reis, A. M. Cunha, M. J. Bevis, Processing and properties of bone-analogue biodegradable and bioinert polymeric composites, Compos. Sci. Technol., 63 (2003), 3–4, 389–402, doi:10.1016/S0266-3538(02)00213-0

27 J. Moy, A. Limaye, T. L. Arinzeh, Fibrous scaffolds for bone tissue engineering, In: Artif. Protein. Pept. Nanofibers, Des. Fabr. Charact. Appl, online, (2020), 351–382, doi:10.1016/B978-0-08-¬102850--6.00015-2

28 P. K. Chakraborty, J. Adhikari, P. Saha, Variation of the properties of sol–gel synthesized bioactive glass 45S5 in organic and inorganic acid catalysts, Mater. Adv., 2 (2021) 1, 413–425, doi:10.1039/ D0MA00628A

29 M. Tzaphlidou, V. Zaichick, Calcium, phosphorus, calcium-phosphorus ratio in rib bone of healthy humans, Biol. Trace Elem. Res., 93 (2003) 1, 63–74, doi:10.1385/BTER:93:1-3:63

30 A. Salam H. Makhlouf, D. Scharnweber, Handbook of Nanoceramic and Nanocomposite Coatings and Materials, Butterworth-¬Heinemann, 2015, doi:10.1016/C2013-0-13073-5

31 S. V. Dorozhkin, M. Epple, Biological and medical significance of calcium phosphates, Angew. Chemie Int. Ed, 41 (2002) 17, 3130–3146, doi:10.1002/1521-3773(20020902)41:17<3130

32 M. Schamel, J. E. Barralet, J. Groll, U. Gbureck, In vitro ion adsorption and cytocompatibility of dicalcium phosphate ceramics, Biomater. Res., 21 (2017) 1, 1–8, doi:10.1186/s40824-017-0096-4

33 K. Suchanek, A. Bartkowiak, M. Perzanowski, M. Marszałek, From monetite plate to hydroxyapatite nanofibers by monoethanolamine assisted hydrothermal approach, Sci. Rep., 8 (2018) 1, 1–9, doi:10.1038/s41598-018-33936-4

34 F. Tamimi, D. Le Nihouannen, H. Eimar, Z. Sheikh, S. Komarova, J. Barralet, The effect of autoclaving on the physical and biological properties of dicalcium phosphate dihydrate bioceramics: Brushite vs. monetite, Acta Biomater., 8 (2012) 8, 3161–3169, doi:10.1016/ j.actbio.2012.04.025

How to Cite
A. Al- AllaqA, Jenan S. Kashan, Mohamed T. El-Wakad, SolimanAM. EVALUATION OF A HYBRID BIOCOMPOSITE OF HA/HDPE REINFORCED WITH MULTI-WALLED CARBON NANOTUBES (MWCNTs) AS A BONE-SUBSTITUTE MATERIAL. MatTech [Internet]. 2021Sep.30 [cited 2021Nov.28];55(5):673–680. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/162