SOLVOTHERMAL SYNTHESIS AND CHARACTERIZATION OF POROUS Co MICROSPHERES

  • Mingdong Zhong School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Jianguo Huang School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Jiasheng Yuan School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Sheng Rong School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Ping Ou
  • Xin Chen School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Bei Zhang School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Qiaoling Ke School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Zhiyun Zhu School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
Keywords: solvothermal, porous Co microsphere, magnetic properties

Abstract

Porous cobalt (Co) microspheres were successfully synthesized via a facile surfactant-free solvothermal route. These microspheres have an average diameter of about 2 µm, assembled by many primary Co nanosheets. A possible formation mechanism of porous Co microspheres is discussed. The magnetic hysteresis loop shows a ferromagnetic feature of porous Co microspheres and the saturation magnetization (Ms) and coercivity (Hc) are 115.3 J/T·kg and 6.883 kA/m, respectively.

References

1J. Vakros, Recent advances in cobalt and related catalysts: from catalyst preparation to catalytic performance, Catalysts, 11 (2021) 4, 420, doi: 10.3390/catal11040420
2V. F. Puntes, K. M. Krishnan, A. P. Alivisatos, Colloidal nanocrystal shape and size control: the case of cobalt, Science, 291 (2001) 5511, 2115–2117, doi: 10.1126/science.1057553
3J. Mohapatra, M. Y. Xing, J. Elkins, J. P. Liu, Hard and semi-hard magnetic materials based on cobalt and cobalt alloys, J. Alloys Compd., 824 (2020), 153874, doi: 10.1016/j.jallcom.2020.153874
4X. Bi, L. M. Ruan, Z. H. Liu, K. Li, Y. Ruan, W. Q. Zheng, Q. Lin, Quantitative analysis of magnetic cobalt particles with an optically pumped atomic magnetometer, Appl. Phys. Lett., 118 (2021) 8, 084101, doi: 10.1063/5.0039565
5R. Xu, T. Xie, Y. G. Zhao, Y. D. Li, Quasi-homogeneous catalytic hydrogenation over monodisperse nickel and cobalt nanoparticles, Nanotechnology, 18 (2007) 5, 055602, doi: 10.1088/0957-4484/18/5/055602
6M. Alagiri, C. Muthamizhchelvan, S. B. A. Hamid, Synthesis of superparamagnetic cobalt nanoparticles through solvothermal process, J. Mater. Sci. - Mater. Electron., 24 (2013) 11, 4157–4160, doi: 10.1007/s10854-013-1375-z
7K. Gandha, K. Elkins, N. Poudyal, X. B. Liu, J. P. Liu, High energy product developed from cobalt nanowires, Sci. Rep-UK, 4 (2014), 5345, doi: 10.1038/srep05345
8H. J. Li, Q. Wu, M. Yue, Y. Peng, Y. Q. Li, J. M. Liang, D. J. Wang, J. X. Zhang, Magnetization reversal in cobalt nanowires with combined magneto-crystalline and shape anisotropies, J. Magn. Magn. Mater., 481 (2019), 104–110, doi: 10.1016/j.jmmm.2019.02.094
9B. Q. Xie, Y. T. Qian, S. Y. Zhang, S. Q. Fu, W. C. Yu, A hydrothermal reduction route to single-crystalline hexagonal cobalt nanowires, Eur. J. Inorg. Chem., (2006) 12, 2454–2459, doi: 10.1002/ejic.200600061
10M. Alagiri, C. Muthamizhchelvan, Solvothermal preparation of cobalt nanorods, J. Mater. Sci. - Mater. Electron., 24 (2013) 4, 1112–1115, doi: 10.1007/s10854-012-0889-0
11F. Dumestre, B. Chaudret, C. Amiens, M. Respaud, P. Fejes, P. Renaud, P. Zurcher, Unprecedented crystalline super-lattices of monodisperse cobalt nanorods, Angew. Chem. Int. Ed., 42 (2003) 42, 5213–5216, doi: 10.1002/anie.200352090
12V. F. Puntes, D. Zanchet, C. K. Erdonmez, A. P. Alivisatos, Synthesis of hcp-Co nanodisks, J. Am. Chem. Soc., 124 (2002) 43, 12874–12880, doi: 10.1021/ja027262g
13S. L. Tripp, R. E. Dunin-Borkowski, A. Wei, Flux closure in self-assembled cobalt nanoparticle rings, Angew. Chem. Int. Ed., 42 (2003) 45, 5591–5593, doi: 10.1002/anie.200352825
14Y. J. Zhang, Q. Yao, Y. Zhang, T. Y. Cui, D. Li, W. Liu, W. Lawrence, Z. D. Zhang, Solvothermal synthesis of magnetic chains self-assembled by flowerlike cobalt submicrospheres, Cryst. Growth Des., 8 (2008) 9, 3206–3212, doi: 10.1021/cg7010452
15D. Yan, H. Y. Zhao, Y. Liu, X. Wu, J. Y. Pei, Shape-controlled synthesis of cobalt particles by a surfactant-free solvothermal method and their catalytic application on the thermal decomposition of ammonium perchlorate, CrystEngComm, 17 (2015) 47, 9062–9069, doi: 10.1039/c5ce01424g
16X. M. Xu, Y. J. Zhao, J. B. Li, H. B. Jin, Y. Z. Zhao, H. P. Zhou, Hydrothermal synthesis of cobalt particles with hierarchy structure and physicochemical properties, Mater. Res. Bull., 72 (2015), 7–12, doi: 10.1016/j.materresbull.2015.07.009
17Y. L. Li, J. Z. Zhao, X. D. Su, Y. C. Zhu, Y. Wang, L. Q. Tang, Z. C. Wang, A facile aqueous phase synthesis of cobalt microspheres at room temperature, Colloid Surface A, 336 (2009) 1–3, 41–45, doi: 10.1016/j.colsurfa.2008.11.012
18M. Z. Wu, Z. W. Pang, X. S. Liu, G. Li, Y. Q. Ma, Z. Q. Sun, L. D. Zhang, X. S. Chen, Solvothermal synthesis and characterization of cobalt microcrystals with hierarchical radial structure, J. Alloys Compd., 513 (2012), 245–250, doi: 10.1016/j.jallcom.2011.10.030
19H. Li, S. J. Liao, Synthesis of flower-like Co microcrystals composed of Co nanoplates in water/ethanol mixed solvent, J. Phys. D: Appl. Phys., 41 (2008) 6, 065004, doi: 10.1088/0022-3727/41/6/065004
20Z. T. Liu, X. Li, Z. W. Liu, J. Lu, Synthesis and catalytic behaviors of cobalt nanocrystals with special morphologies, Powder Technol., 189 (2009) 3, 514–519, doi: 10.1016/j.powtec.2008.08.003
21D. P. Dinega, M. G. Bawendi, A solution-phase chemical approach to a new crystal structure of cobalt, Angew. Chem. Int. Ed., 38 (1999) 12, 1788–1791, doi: 10.1002/(SICI)1521-3773(19990614)38:12<1788::AID-ANIE1788>3.0.CO;2-2
22F. S. Li, T. Wang, L. Y. Ren, J. R. Sun, Structure and magnetic properties of Co nanowires in self-assembled arrays, J. Phys.: Condens. Matter, 16 (2004) 45, 8053–8060, doi: 10.1088/0953-8984/16/45/027
23S. H. Sun, C. B. Murray, Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices (invited), J. Appl. Phys., 85 (1999) 8, 4325–4330, doi: 10.1063/1.370357
24H. L. Lv, X. H. Liang, G. B. Ji, H. Q. Zhang, Y. W. Du, Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties, ACS Appl. Mater. Inter., 7 (2015) 18, 9776–9783, doi: 10.1021/acsami.5b01654
25P. Ou, G. Xu, C. Xu, Y. Zhang, X. Hou, G. Han, Synthesis and characterization of magnetite nanoparticles by a simple solvothermal method, Mater. Sci-Poland, 28 (2010) 4, 817–822
26Y. G. Sun, Y. N. Xia, Shape-controlled synthesis of gold and silver nanoparticles, Science, 298 (2002) 5601, 2176–2179, doi: 10.1126/science.1077229
27L. Zhang, R. B. Tong, W. Y. Ge, R. Guo, S. E. Shirsath, J. F. Zhu, Facile one-step hydrothermal synthesis of SnO2 microspheres with oxygen vacancies for superior ethanol sensor, J. Alloys Compd., 814 (2020), 152266, doi: 10.1016/j.jallcom.2019.152266
28G. Dumpich, T. P. Krome, B. Hausmanns, Magnetoresistance of single Co nanowires, J. Magn. Magn. Mater., 248 (2002) 2, 241–247, doi: 10.1016/S0304-8853(02)00347-5
29B. Hausmanns, T. P. Krome, G. Dumpich, Magnetoresistance and magnetization reversal process of Co nanowires covered with Pt, J. Appl. Phys., 93 (2003) 10, 8095–8097, doi: 10.1063/1.1540054
30S. L. Wen, Y. Liu, X. C. Zhao, J. W. Cheng, H. Li, Synthesis, dual-nonlinear magnetic resonance and microwave absorption properties of nanosheet hierarchical cobalt particles, Phys. Chem. Chem. Phys., 16 (2014) 34, 18333–18340, doi: 10.1039/c4cp01468e
Published
2021-09-30
How to Cite
1.
Zhong M, Huang J, Yuan J, Rong S, Ou P, Chen X, Zhang B, Ke Q, Zhu Z. SOLVOTHERMAL SYNTHESIS AND CHARACTERIZATION OF POROUS Co MICROSPHERES. MatTech [Internet]. 2021Sep.30 [cited 2021Nov.28];55(5):663–666. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/160