A SULPHIDE CAPACITY PREDICTION MODEL OF BLAST FURNACE SLAG

  • Yongchun Guo School of Metallurgy, Northeastern University, Shenyang 110819, China
  • Shen Fengman
  • Haiyan Zheng School of Metallurgy, Northeastern University, Shenyang 110819, China
  • Shuo Wang School of Metallurgy, Northeastern University, Shenyang 110819, China
  • Xin Jiang School of Metallurgy, Northeastern University, Shenyang 110819, China
  • Qiangjian Gao School of Metallurgy, Northeastern University, Shenyang 110819, China
Keywords: blast furnace(BF); sulphide capacity(Cs); mass action concentrations; the ion and molecule coexistence theory(IMCT)

Abstract

A sulphide capacity prediction model of CaO-SiO2-MgO-Al2O3 slags has been developed based on the ion and molecule coexistence theory(IMCT). Sulphide capacity(Cs) of slag for blast furnace (BF) with high Al2O3 in the CaO-SiO2-MgO-Al2O3 system at 1773K were measured by applying slag-metal equilibrium method. The feasibility of the developed IMCT model is verified by the sulphide capacity measured in the experiment. Effects of R(w(CaO)/w(SiO2)), w(MgO)/w(Al2O3) and w(Al2O3) on sulphide capacity were discussed. There is a good linear relationship between the experimental value and the predicted value. Therefore, the theoretical model of ion and molecule coexistence can be used to calculate the sulphide capacity of CaO-SiO2-MgO-Al2O3 quaternary slag system. When w(Al2O3)=20% and w(MgO)/w(Al2O3)=0.5, the sulphide capacity of slag increased with the increase of R. When w(Al2O3)=20% and R=1.30, the sulphide capacity of slag increased with the increase of w(MgO)/w(Al2O3). When R=1.30 and w(MgO)/w(Al2O3)=0.4, the sulphide capacity of slag decreased with the increase of w(Al2O3).

References

[1] J. Zhang, X. Lv, Z. Yan, Desulphurisation ability of blast furnace slag containing high Al2O3 and 5mass% TiO2 at 1773K. Ironmaking & Steelmaking, 43, (2016), 378-384
[2] J. H. Park, G. Park, Sulfide capacity of CaO-SiO2-MnO-Al2O3-MgO slags at 1873K. ISIJ International, 52, (2012), 764-769
[3] M. M. Nzotta, S. C. Du, S. Seetharaman, Sulphide capacities in some multi component slag systems. ISIJ International, 38, (1998), 1170-1179
[4] Z. T. Zhang, G. H. Wen, P. Tang, The influence of Al2O3/SiO2 ratio on the viscosity of mold fluxes. ISIJ International, 48, (2008), 739-746
[5] A. Shankar, G. Märten, S. Seetharaman, Sulfide capacity of high alumina blast furnace slags. Metallurgical & Materials Transactions B, 37, (2006), 941-947
[7] X. D. Ma, M. Chen, H. F. Xu, Sulphide capacity of CaO-SiO2-Al2O3-MgO system relevant to low MgO blast furnace slags. ISIJ International, 56, (2016), 2126-2131
[8] X. D. Ma, M. Chen, J. Zhu, Properties of low-MgO ironmaking blast furnace slags. ISIJ International, 58, (2018), 1402-1405
[9] J. D. Seo, S. H. Kim, Sulphide capacity of CaO-SiO2-Al2O3-MgO(-FeO) smelting reduction slags. Steel Research, 70, (1999), 203-208
[10] R. W. Young, J. A. Duffy, G. J. Hassall, Use of optical basicity concept for determining phosphorus and sulphur slag-metal partitions. Ironmaking & Steelmaking, 19, (1992), 201-219
[11] N. J. Sosinsky, I. D. Sommerville, The composition and temperature dependence of the sulfide capacity of metallurgical slags. Metallurgical and Materials Transactions B, 17, (1986), 331-337
[12] S. C. Du, R. S. Nilsson, S. Seetharaman, A mathematical model for estimation of sulphide capacities of multi-component slags. Steel Research, 66, (1995), 458-462
[13] M. M. Nzotta, S. C. Du, S. Seetharaman, A study of the sulfide capacities of iron-oxide containing slags. Metallurgical & Materials Transactions B, 30, (1999), 909-920
[14] R. G. Reddy, M. Blander, Modeling of sulfide capacities of silicate melts. Metallurgical and Materials Transactions B, 18, (1987), 591-596
[15] X. M. Yang, J. S. Jiao, R. C. Ding, A thermodynamic model for calculating sulphur distribution ratio between CaO-SiO2-Al2O3-MgO ironmaking slags and carbon saturated hot metal based on the ion and molecule coexistence theory. ISIJ International, 49, (2009), 1828-1837
[16] C. B. Shi, X. M. Yang, J. S. Jiao, A sulphide capacity prediction model of CaO-SiO2-Al2O3-MgO ironmaking slags based on the ion and molecule coexistence theory. ISIJ International, 50, (2010), 1362-1372
[17] A. Shankar, Sulphur partition between hot metal and high alumina blast furnace slag. Ironmaking & Steelmaking, 33, (2006), 413-418
[18] Zhang J. Computational thermodynamics of metallurgical melts and solutions[J]. Metallurgical Industry Press, Beijing, (2007)
[19] M, Allibert, H. Gaye, Slag Atlas, 2nd ed. Verlag Stahleisen GmbH: Düsseldorf. Germany, (1995).
[20] X.Yuan, J. L. Zhang, R. Mao, Effect of w(MgO)/w(Al2O3) ratio on desulfurization capacity of BF slag. Journal of Northeastern University(Natural Science), 36, (2015), 1609-1613
[21] J. H. Park, D. J. Min, H. S. Song, Amphoteric behavior of alumina in viscous flow and structure of CaO-SiO2(-MgO)-Al2O3 slags. Metallurgical & Materials Transactions B, 35, (2004), 269-275
[22] H. Kim, W. H. Kim, I. Sohn, The effect of MgO on the viscosity of the CaO-SiO2-20wt%Al2O3-MgO slag system. Steel Research International, 81, (2010), 261-264
Published
2021-09-30
How to Cite
1.
Guo Y, Fengman S, Zheng H, Wang S, Jiang X, Gao Q. A SULPHIDE CAPACITY PREDICTION MODEL OF BLAST FURNACE SLAG . MatTech [Internet]. 2021Sep.30 [cited 2021Nov.28];55(5):725–732. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/157