ACUTE EFFECT OF AURICULAR NERVE STIMULATION ON PERISTALSIS
Effects of transcutaneous auricular nerve stimulation
Abstract
This study aimed to assess short-term effects of transcutaneous auricular vagus nerve stimulation (taVNS) applied to four predefined sites on the cymba conchae (CC), with the goal of modulating specific physiological functions. A secondary objective was to investigate whether taVNS could influence bowel sounds (BSs), potentially indicating alterations in gastric motility. Five healthy female volunteers, aged 21 to 23 years, participated in the study. The taVNS procedure involved the insertion of a plug equipped with four globule-shaped platinum stimulating electrodes (cathodes) into the external ear. The common anode (CA) was positioned at the nape of the neck. Physiological measurements, including BSs and cardiac activity, were obtained using phonogastrogram (PGG) and forefinger photoplethysmographic (FPPG) recordings, respectively. The acquisition of the PGG signal was based on the detection of BSs during the taVNS application to the CC. The frequency and spectral characteristics of BSs were recorded using contact microphones (MICs). To evaluate the clinically relevant effects of taVNS on the gastrointestinal tract (GIT), volunteers were interviewed before and after the intervention, and their responses to a set of questions regarding GIT-related symptoms were analyzed. The results demonstrated an overall increase in normalized amplitude across all microphones, alongside an average increase in bowel sound frequency, except at MIC3. Notably, three out of five volunteers reported a sensation of hunger following the taVNS intervention.
References
2. J. Ellrich, Transcutaneous vagus nerve stimulation, Eur. Neurol. Rev., 6(4) (2011) 254–6, doi: http://doi.org/10.17925/ENR.2011.06.04.254
3. A. C. Yang, J. G- Zhang, P. J. Rong, G. G. Liu, N. Chen, B. Zhu, A new choice for the treatment of epilepsy: electrical auricula-vagus-stimulation Med. Hypothese, 77(2) (2011) 244–5, doi: 10.1016/j.mehy.2011.04.021
4. E. Frangos, J. Ellrich, B.R. Komisaruk, Non-invasive Access to the Vagus Nerve Central Projections via Electrical Stimulation of the External Ear: fMRI Evidence in Humans. Brain Stimul., 8(3) (2015) 624-636. doi: 10.1016/j.brs.2014.11.018
5. B.W. Badran, L.T. Dowdle, O.J. Mithoefer, N.T. LaBate, J. Coatsworth, J.C. Brown, et al. Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: a concurrent taVNS/fMRI study and review Brain Stimul., 11(3) (2018) 492–500
6. N. Yakunina, S.S. Kim, E.C. Nam, Optimization of transcutaneous vagus nerve stimulation using functional MRI, Neuromodulation, 20(3) (2017), 290-300, doi: 10.1111/ner.12541
7. J.A. Clancy, D.A. Mary, K.K. Witte, J.P. Greenwood, S.A. Deuchars, J. Deuchars, Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity, Brain Stimul., 7(6) (2014), 871–877, doi: 10.1016/j.brs.2014.07.031
8. B.W. Badran, O.J. Mithoefer, C.E. Summer, N.T. LaBate, C.E. Glusman, A.W. Badran, et al., Short trains of transcutaneous auricular vagus nerve stimulation (taVNS) have parameter-specific effects on heart rate, Brain Stimul., 11(4) (2018), 699–708, doi: 10.1016/j.brs.2018.04.004
9. S. Dietrich, J. Smith, C. Scherzinger , K. Hofmann-Preiß, T. Freitag, A. Eisenkolb, R. Ringler, A novel transcutaneous vagus nerve stimulation leads to brainstem and cerebral activations measured by functional MRI, Biomed. Tech. Biomed. Eng., 53(3) (2008) 104–11, doi: 10.1515/BMT.2008.022
10. L. Gori, F. Firenzuoli, Ear acupuncture in European traditional medicine, Evid. Based Complement. Altern. Med., 4(Suppl 1) (2007) 13–6, doi:10.1093/ecam/nem106
11. J. Sandby-Møller, T. Poulsen, H.C. Wulf, Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits, Acta Derm. Venereol., 83(6) (2003) 410–3, doi: 10.1080/00015550310015419
12. A. Kuhn, Modeling transcutaneous electrical stimulation, Diss. ETH No. 17948, ETH Zurich, Zurich 2008, 211
13. Y.A. Chizmadzhev, A.V. Indenbom, P.I. Kuzmin, S.V. Galichenko, J.C. Weaver, R.O. Potts, Electrical properties of skin at moderate voltages: contribution of appendageal macropores, Biophys. J., 74(2 Pt 1) (1998) 843–56, doi: 10.1016/S0006-3495(98)74008-1
14. E.T. Peuker, T.J. Filler, The nerve supply of the human auricle, Clin. Anat., 15(1) (2002) 35–7, doi: 10.1002/ca.1089, doi: 10.1002/ca.1089
15. T. Rahman, A.T. Adams, M. Zhang, E. Cherry, B. Zhou, H. Peng, T. Choudhury, BodyBeat: A Mobile System for Sensing Non-Speech Body Sounds. Proceedings of the International Conference on Mobile Systems, Applications, and Services (MobiSys) 2014, Bretton Woods, NH, USA
16. S. Nirjon, R.F. Dickerson, P. Asare, Q. Li, D. Hong, J.A. Stankovic, P. Hu, G. Shen, X. Jiang, Auditeur: A mobile-cloud service platform for acoustic event detection on smartphones, Proc. MobiSys’13, June 25-28, 2013, Taipei, Taiwan
17. K. Yatani, K.N. Truong, Body Scope: A wearable acoustic sensor for activity recognition. Proc. UbiComp’ 12, Sep 5 – Sep 8, 2012, Pittsburgh, USA
18. F.C. Campbell, B.E. Storey, P.T. Cullen, A. Cuschieri, Surface vibration analysis (SVA): a new non-invasive monitor of gastrointestinal activity, Gut, 30(1) (1989) 39–45. doi: 10.1136/gut.30.1.39
19. P.J. Prendergast, D.E. Beverland, A.W. Blayney, N.J. Dunne, T.F. Gorey, P.A. Grace, B.A. McCormack, T. McGloughlin, P.R. O’Connell, J.F. Orr, Modelling medical devices: The application of bioenginering in surgery, Ir. J. Med. Sci., 168(1) (1999) 3–7, doi: 10.1007/BF02939570
20. K. Kölle, M.F. Aftab, L.E. Andersson, A.L. Fougner, Ø. Stavdahl, Data driven filtering of bowel sounds using multivariate empirical mode decomposition, Biomed. Eng. Online, 18(1) (2019) 28, doi: 10.1186/s12938-019-0646-1
21. B. Li, J.-R. Wang, Y.-L. Ma, Bowel sounds and monitoring gastrointestinal motility in critically ill patients, Clin. Nurse Spec., 26(1) (2012) 29–34, doi: 10.1097/NUR.0b013e31823bfab8
22. X. Du, G. Allwood, K.M. Webberley, A. Osseiran, B.J. Marshall, Bowel sounds identification and migrating motor complex detection with low-cost piezoelectric acoustic sensing device, Sensors (Basel), 18(12) (2018) 4240, doi: 10.3390/s18124240
23. R. Ranta, V. Louis-Dorr, C. Heinrich, D. Wolf, F. Guillemin, Digestive activity evaluation by multichannel abdominal sounds analysis, IEEE Trans. Biomed. Eng., 57(6) (2010) 1507–1519, doi: 10.1109/TBME.2010.2040081
24. C. Liu, C. Griffiths, A. Murray, D. Zheng, Comparison of stethoscope bell and diaphragm, and of stethoscope tube length, for clinical blood pressure measurement, Blood pressure monitoring, 21(3) (2016) 178–183, doi: 10.1097/MBP.0000000000000175
25. D.I.A. Pereira, S.S. Couto Irving, M.C.E. Lomer, J.J. Powell, A rapid, simple questionnaire to assess gastrointestinal symptoms after oral ferrous sulphate supplementation, BMC Gastroenterol., 14 (2014)103, doi: 10.1186/1471-230X-14-103
26. C. Alon, G. Kantor, H.S. Ho, Effects of electrode size on basic excitatory responses and on selected stimulus parameters, J. Orthop. Sports Phys. Ther., 20 (1994) 29–35, doi: 10.2519/jospt.1994.20.1.29
27. N. Sha, L.P.J. Kenney, B.W. Heller, A.T. Barker, D. Howard, M. Moatamedi, A finite element model to identify electrode influence on current distribution in the skin, Artif. Org., 32(8) (2008) 639–43, doi: 10.1111/j.1525-1594.2008.00615.x
28. W. He, X. Wang, H. Shi, H. Shang, L. Li, X. Jing, B. Zhu, Auricular acupuncture and vagal regulation, Evid. Based Complement. Altern. Med., 2012 (2012) 6 pages, doi: https://doi.org/10.1155/2012/786839
29. E.M. Hudak, J.T. Mortimer, H.B. Martin, Platinum for neural stimulation: voltammetry considerations. J. Neural. Eng., 7(2) (2010) 26005, doi: 10.1088/1741-2560/7/2/026005
30. S.B. Brummer, M.J. Turner, Electrochemical considerations for safe electrical stimulation of the nervous system with platinum electrodes, IEEE Trans. Biomed. Eng., 24(1) (1977) 59–63, doi: 10.1109/TBME.1977.326218
31. B.W. Badran, O.J. Mithoefer, C.E. Summer, N.T. LaBate, C.E. Glusman, A.W. Badran, W.H. DeVries, P.M. Summers, C.W. Austelle, L.M. McTeague, J.J. Borckardt, M.S. George, Short trains of transcutaneous auricular vagus nerve stimulation (taVNS) have parameter-specific effects on heart rate, Brain stimulation, 11(4) (2018) 699–708, doi: 10.1016/j.brs.2018.04.004
32. G. Allwood, X. Du, K.M. Webberley, A. Osseiran, B.J. Marshall, Advances in Acoustic Signal Processing Techniques for Enhanced Bowel Sound Analysis, IEEE Rev. Biomed. Eng., 12 (2019) 240-253. doi: 10.1109/RBME.2018.2874037
33. A. Jubran, Pulse oximetry, Crit. Care, 19(1) (2015) 272, doi: 10.1186/s13054-015-0984-8
34. M. Elgendi, R. Fletcher, Y. Liang, N. Howard, N.H. Lovell, D. Abbott, K. Lim, R. Ward, The use of photoplethysmography for assessing hypertension, NPJ Digit. Med., 2 (2019) 60, doi: 10.1038/s41746-019-0136-7
35. K. Yamaguchi, T. Yamaguchi, T. Odaka, H. Saisho, Evaluation of gastrointestinal motility by computerized analysis of abdominal auscultation findings, J. Gastroenterol. Hepatol., 21(3) (2006) 510–514, doi: 10.1111/j.1440-1746.2005.03997.x
36. S. Nishi, Y. Seino, H. Ishida, M. Seno, T. Taminato, H. Sakurai, H. Imura, Vagal regulation of insulin, glucagon, and somatostatin secretion in vitro in the rat, J. Clin. Invest., 79(4) (1987) 1191–1196, doi: 10.1172/JCI112936
37. J. Rodin, Insulin levels, hunger, and food intake: an example of feedback loops in body weight regulation, Health Psychol., 4(1) (1985) 1–24, doi: 10.1037//0278-6133.4.1.1