STUDY ON THE EFFECT OF SINTERING TEMPERATURE ON THE PROPERTIES OF POROUS MATERIALS FROM WASTE GLASS
Abstract
The increasing volume of waste glass released into the environment underscores the critical role of material recycling, particularly glass recycling, in promoting sustainable development. A promising approach is the recycling of waste glass into porous materials. This study investigates the influence of sintering temperature on the properties of porous materials made from waste glass. The material samples were fabricated by adding liquid sodium silicate to glass powder at a glass powder/liquid sodium silicate ratio of 9/1. The optimal sintering temperature range for the porous material was determined through a heating microscope, revealing a suitable range of 770 oC to 830 oC. The sintered porous glass samples were determined by properties such as pore size distribution analysis, density, water absorption, and porosity measurements to evaluate the properties of the resulting product. Furthermore, the Fourier Transform Infrared Spectroscopy technique was employed to assess the functional group composition of the product. This research contributes to the search for effective waste glass recycling solutions while simultaneously producing porous materials with high application potential.
References
2) E. Samson, J. Marchand, and J. Beaudoin, Modeling the influence of chemical reactions on the mechanisms of ionic transport in porous materials: an overview. Cem. Concr. Res., 30 (2000), 1895-1902, doi: 10.1016/S0008-8846(00)00458-0.
3) A. Vu, Y. Qian, and A. Stein, Porous Electrode Materials for Lithium-Ion Batteries – How to Prepare Them and What Makes Them Special. Adv. Energy Mater., 2 (2012), 1056-1085, doi: 10.1002/aenm.201200320.
4) E. Mercadelli and C. Galassi, How to Make Porous Piezoelectrics? Review on Processing Strategies. IEEE Trans. Ultrason. Eng., 68 (2021), 217-228, doi: 10.1109/TUFFC.2020.3006248.
5) D. Bajare, G. Bumanis, and A. Korjakins, New porous material made from industrial and municipal waste for building application. Mater. Sci., 20 (2014), 333-338, doi: 10.5755/j01.ms.20.3.4330.
6) T. Takei, H. Ota, Q. Dong, A. Miura, Y. Yonesaki, N. Kumada, and H. Takahashi, Preparation of porous material from waste bottle glass by hydrothermal treatment. Ceram. Int., 38 (2012), 2153-2157, doi: 10.1016/j.ceramint.2011.10.057
7) B. K. Thach, L. N. Tan, D. Q. Minh, L. C. Hung, and P. D. Tuan, Production of Porous Glass-Foam Materials from Photovoltaic Panel Waste Glass. Proceedings of the Green Materials and Electronic Packaging Interconnect Technology Symposium. (2012), 317-327, doi: 10.1007/978-981-19-9267-4_34.
8) P. Sooksaen, N. Sudyod, N. Thongtha, and R. Simsomboonphol, Fabrication of lightweight foam glasses for thermal insulation applications. Mater. Today: Proc., 17 (2019), 1823-1830, doi: 10.1016/j.matpr.2019.06.219.
9) S. S. Owoeye, G. O. Matthew, F. O. Ovienmhanda, and S. O. Tunmilayo, Preparation and characterization of foam glass from waste container glasses and water glass for application in thermal insulations. Ceram. Int., 46 (2020), 11770-11775, doi: 10.1016/j.ceramint.2020.01.211.
10) J. H. Kim, M. Kim, and J.-S. Yu, Recycle of silicate waste into mesoporous materials. Environ. Sci. Technol., 45 (2011), 3695-3701, doi: 10.1021/es103510r.
11) D. R. Liu, J. S. Park, R. E. Benoit, and F. D. Jackson, Chemical analysis of ream defect in float glass. X-Ray Spectrom., 21 (1992), 293-298, doi: 10.1002/xrs.1300210607.
12) A. Iatsenko, A. Mishchenko, and B. Kornilovych, The effect of nano-silica and waste glass powder on mechanical, rheological, and shrinkage properties of UHPC using response surface methodology. J. Mater. Res. Technol., 8 (2019), 804-811, doi: https://doi.org/10.1016/j.jmrt.2018.06.011
13) A. A. Mohammed, Z. T. Khodair, and A. A. Khadom, Preparation and investigation of the structural properties of α-Al2O3 nanoparticles using the sol-gel method. Chem. Data Collect., 29 (2020), 100531, doi: 10.1016/j.cdc.2020.100531
14) K. D. T. Kien, L. M. Son, D. Q. Minh, and T. Q. Nhat, Development of refractory concrete using glass grinding waste sand. Mater. Technol., 58 (2024), 737–743, doi: 10.17222/mit.2024.1263
15) I. W. Sutapa, A. W. Wahab, P. Taba, and N. La Nafie, Synthesis and structural profile analysis of the MgO nanoparticles produced through the sol-gel method followed by annealing process. Orient. J. Chem., 34 (2018), 1016, doi: 10.13005/ojc/340252.
16) D. Li, H. Wang, Z. He, Z. Xiao, R. Lei, and S. Xu, Effect of CuO addition on the sintering temperature and microwave dielectric properties of CaSiO3–Al2O3 ceramics. Prog. Nat. Sci.: Mater. Int., 24 (2014), 274-279, doi: 10.1016/j.pnsc.2014.04.003
17) S. B. Choi, N. W. Kim, D. K. Lee, and H. Yu, Growth mechanism of cubic MgO granule via common ion effect. J. Nanosci. Nanotechnol., 13 (2013), 7577-7580, doi: 10.1166/jnn.2013.7882
18) M. Seifan, A. Khajeh Samani, S. Hewitt, and A. Berenjian, The effect of cell immobilization by calcium alginate on bacterially induced calcium carbonate precipitation. Fermentation, 3 (2017), 57, doi: 10.3390/fermentation3040057
19) D. Luo, Y. Lei, N. Zhao, H. He, K. Abrar, and K. Li, Unique Double Carbon Protection Structured Co3O4 Anode for Lithium Ion Battery. J. Mater. Sci. Chem. Eng., 8 (2020), 56, doi: 10.4236/msce.2020.812005
20) K. D. T. Kien, P. D. Tuan, T. Okabe, D. Q. Minh, and T. Khai, Study on sintering process of woodceramics from the cashew nutshell waste. J. Ceram. Process. Res., 19 (2018), 472-478, doi: 10.36410/jcpr.2018.19.6.472
21) Kurečič, M., Sfiligoj-Smole, M., and Stana-Kleinschek, K., UV Polymerization of poly (N-Isopropylacrylamide) hudrogel. Mater. Technol., 46 (2012), 87-91, doi: http://mit.imt.si/izvodi/mit121/kurecic.pdf
22) T. Van Khai, H. N. Minh, N. V. U. Nhi, and K. D. T. Kien, Effect of composition on the ability to form SiC/SiO2-C composite from rice husk and silica gel. J. Ceram. Process. Res., 22 (2021), 246-251, doi: 10.36410/jcpr.2021.22.2.246
23) S. Sugiman, P. D. Setyawan, M. Maryudi, and S. Madnasri, Water absorption, tensile, flexural and impact properties of aged bamboo fibre/nano CaCO3-modified unsaturated polyester composites. J. Appl. Sci. Eng., 24 (2021), 239-251, doi: 10.6180/jase.202104_24(2).0013.
24) T. Jiang, C. Wang, M. Chen, H. Hu, J. Huang, X. Chen, and Q. Zang, Mechanochemical Synthesis of Dolomite-Related Carbonates—Insight into the Effects of Various Parameters. Miner., 13 (2023), 1359, doi: 10.3390/min13111359
25) N. Damayanti, Preparation of superhydrophobic PET fabric from Al2O3 – SiO2 hybrid: Geometrical approach to create high contact angle surface from low contact angle materials. J. Sol-Gel Sci. Technol., 56 (2010), 47-52, doi: 10.1007/s10971-010-2271-0
26) A. Samy, A. Ismail, and H. Ali, Environmentally friendly mesoporous SiO2 with mixed fiber/particle morphology and large surface area for enhanced dye adsorption. J. Mater. Sci., 58 (2023), 1586-1607, doi: 10.1007/s10853-022-08119-2
27) N. Ramlan, S. I. Zubairi, and M. Y. Maskat, Response surface optimisation of polydimethylsiloxane (PDMS) on borosilicate glass and stainless steel (SS316) to increase hydrophobicity. Mol., 27 (2022), 3388, doi: 10.3390/molecules27113388
28) D. Durgalakshmi, R. Ajay Rakkesh, S. Kamil, S. Karthikeyan, and S. Balakumar, Rapid dilapidation of alcohol using magnesium oxide and magnesium aspartate based nanostructures: A Raman spectroscopic and molecular simulation approach. J. Inorg. Organomet. Polym. Mater., 29 (2019), 1390-1399, doi: 10.1007/s10904-019-01105-3
29) M. Keshavarz, R. Foroutan, F. Papari, L. Bulgariu, and H. Esmaeili, Synthesis of CaO/Fe2O3 nanocomposite as an efficient nanoadsorbent for the treatment of wastewater containing Cr (III). Sep. Sci. Technol., 56 (2021), 1328-1341, doi: 10.1080/01496395.2020.1778727
30) K. D. T. Kien and N. V. U. Nhi, Effect of Mg/ Cu additives on the ability to synthesize SiC from rice husk. J. Appl. Sci. Eng., 28 (2024), 1717-1726, doi: 10.6180/jase.202508_28(8).0009.
31) M. Liu, M. Kang, K. Chen, Y. Mou, and R. Sun, Synthesis and luminescent properties of CaCO3: Eu3+@SiO2 phosphors with core–shell structure. Appl. Phys. A., 124 (2018), 1-10, doi: 10.1007/s00339-018-1668-4
32) R. Yu, The application of waste float glass, recycled in structural beams made with the glass casting method. Challenging Glass Conference Proceedings, 7 (2020), doi: 10.7480/cgc.7.4775