EFFECTS OF MANGANESE DIOXIDE AND SINTERING TEMPERATURE ON THE PROPERTIES AND MICROSTRUCTURE OF A SECONDARY-ALUMINUM-ASH CERAMIC PROPPANT

  • Yongming Zeng Xinjiang Key Laboratory of High Value Green Utilization of Low-Rank Coal, School of Chemistry and Chemical Engineering, Changji University, Changji 831100, China
  • Naichen Xiao Shanxi Key Laboratory of Advanced Manufacturing Technology, School of Mechanical Engineering, North University of China, Taiyuan 030051, China
  • Haiping Yang Xinjiang Key Laboratory of High Value Green Utilization of Low-Rank Coal, School of Chemistry and Chemical Engineering, Changji University, Changji 831100, China
  • Peipeng Yang Xinjiang Key Laboratory of High Value Green Utilization of Low-Rank Coal, School of Chemistry and Chemical Engineering, Changji University, Changji 831100, China
  • Fei Yan Xinjiang Key Laboratory of High Value Green Utilization of Low-Rank Coal, School of Chemistry and Chemical Engineering, Changji University, Changji 831100, China
  • Sifeng Bi Xinjiang Key Laboratory of High Value Green Utilization of Low-Rank Coal, School of Chemistry and Chemical Engineering, Changji University, Changji 831100, China
  • Ruien Yu Xinjiang Key Laboratory of High Value Green Utilization of Low-Rank Coal, School of Chemistry and Chemical Engineering, Changji University, Changji 831100, China
Keywords: ceramic proppant, secondary aluminum ash, crushing rate, microstructure

Abstract

In this study, a ceramic proppant for hydraulic fracturing in oil and gas extraction was prepared by sintering secondary aluminum ash as the main raw material, kaolin as the auxiliary material and manganese dioxide as the additive. The effects of different proportions of manganese dioxide on the physical phase composition and microscopic morphology of the proppant were analyzed with X-ray diffraction and scanning electron microscopy at sintering temperatures of 1170–1270 °C. The results showed that at 1270 °C, the crushing rate of the sample with a 2 w/% manganese dioxide addition was 8.41 %, and the main crystalline phase consisted of corundum and a small amount of mullite. With the addition of manganese dioxide, the ternary eutectic system of MnO2-Al2O3-SiO2 increases, which lowers the corundum generation temperature, accelerates its growth rate and improves the crushing resistance. This study solves the problem of weak crushing resistance of the ceramic-granule proppant prepared from secondary aluminum ash, and achieves an efficient use of waste, which is of great significance for environmental protection and resource recycling.

References

1 J. M. Fan, T. P. Bailey, Z. Q. Sun, P. C. Zhao, C. Uher, F. L. Yuan, M. Y. Zhao, Preparation and properties of ultra-low density proppants for use in
hydraulic fracturing, Journal of Petroleum Science and Engineering, 163 (2018) 100-109, doi: 10.1016/j.petrol.2017.10.024
2 Y. C. Feng, C. Y. Ma, J. G. Deng, X. R. Li, M. M. Chu, H. Cheng, Y. Y. Luo, A comprehensive review of ultralow-weight proppant technology, Petroleum
Science, 18 (2021) 807-826, doi: 10.1007/s12182-021-00559-w
3 K. Razminia, A. Razminia, D. F. M. Torres, Pressure responses of a vertically hydraulic fractured well in a reservoir with fractal structure, Applied
Mathematics and Computation, 257(2015): 374-380, doi: 10.1016/j.amc.2014.12.124
4 X. L. Wu, Z. Z. Huo, Q. Ren, H. H. Li, F. Lin, T. Y. Wei, Preparation and characterization of ceramic proppants with low density and high strength using
fly ash, Journal of Alloys and Compounds, 702 (2017) 442-448, doi: 10.1016/j.jallcom.2017.01.262
5 X. D. Chen, T. H. Li, T. H. Zhao, H. Li, A. L. Dang, Y. D. Shang, Y. Zhang, Effect of MnO2 on the Properties of Mullite-based Ceramics, Chemistry Letters,
46 (2017) 327-329, doi: 10.1246/cl.161012
6 X. Zhao, W. X. Li, X. R. Zhang, Y. F. Xue, J. B. Mu, D. F. Xu, W. P. Li, Y. M. Wang, S. J. Qin, Z. X. Zhang, Low-temperature preparation of lightweight ceramic
proppants using high-proportioned coal-based solid wastes, Ceramics International, 50 (2024) 11, 18117-18124, doi: 10.1016/j.ceramint.2024.02.295
7 D. H. Ding, Y. F. Fang, G. Q. Xiao, X. F. Zhu, P. C. Fu, X. C. Chong, Effects of sintering temperature on microstructure and properties of low-grade
bauxite-based ceramic proppant, International Journal of Applied Ceramic Technology, 18 (2021) 5, 1832-1844, doi: 10.1111/ijac
8 S. Y. Wang, B. Liu, Q. Zhang, Q. Wen, X. H. Lu, K. Xiao, C. Ekberg, S. G. Zhang, Application of geopolymers for treatment of industrial solid waste
containing heavy metals: State-of-the-art review, Journal of Cleaner Production, 390 (2023), 136053, doi: 10.1016/j.jclepro.2023.136053
9 J. Z. Zhao, Z. L. Liu, Y. M. Li, Preparation and characterization of low-density mullite-based ceramic proppant by a dynamic sintering method, Materials
Letters, 152 (2015), 72-75, doi: 10.1016/j.matlet.2015.03.060
10 X. X. Ma, Y. M. Tian, Y. Zhou, K. Y. Wang, Y. S. Chai, Z. G. Li, Sintering temperature dependence of low-cost, low-density ceramic proppant with high
breakage resistance, Materials Letters, 180 (2016) 127-129, doi: 10.1016/j.matlet.2016.04.080
11 Y. Q. Shao, W. Y. Zhang, Y. Zhu, T. Dou, L. Z. Chu, Z. D. Liu, Preparation of municipal solid waste incineration fly ash-based ceramsite and its
mechanisms of heavy metal immobilization, Waste Management, 143 (2022), 54-60, doi: 10.1016/j.wasman.2022.02.021
12 Q. Ren, Y. H. Ren, H. H. Li, X. L. Wu, W. N. Bai, J. L. Zheng, O. Hai, Preparation and characterization of high silicon ceramic proppants using low grade
bauxite and fly ash, Materials Chemistry and Physics, 230 (2019), 355-361, doi: 10.1016/j.matchemphys.2019.04.009
13 J. Y. Hao, H. Q. Ma, X. Feng, Y. F. Gao, K. Y. Wang, Y. M. Tian, Low-temperature sintering of ceramic proppants by adding solid wastes, International
Journal of Applied Ceramic Technology, 15 (2018) 2, 563-568, doi: 10.1111/ijac.12818
14 F. Kukurugya, J. Bergmans, R. Snellings, J. Spooren, Recycling of spent Cu-based oxygen carriers into high-strength ceramic proppants, Ceramics
International, 43 (2017) 18,16895-16902, doi: 10.1016/j.ceramint.2017.09.090
15 M. Mahinroosta, A. Allahverdi, Hazardous aluminum dross characterization and recycling strategies: A critical review, Journal of Environmental
Management, 223 (2018), 452-468, doi: 10.1016/j.jenvman.2018.06.068
16 Y. H. Wang, Y. Lan, Y. H. Hu, Adsorption mechanisms of Cr (VI) on the modified bauxite tailings, Minerals Engineering, 21 (2008) 12-14, 913-917, doi:
10.1016/j.mineng.2008.04.003
17 Y. Shi, K. X. Jiang, T. A. Zhang, Cleaner extraction of alumina from coal fly ash: Baking-electrolysis method, Fuel, 273 (2020), 117697, doi:
10.1016/j.fuel.2020.117697
18 W. W. Yang, Y. F. Zhang, Effects of MnO2 addition on the microstructure and dielectric properties of LiTaO3 ceramics, 173 (2020), 109130, doi:
10.1016/j.vacuum.2019.109130
19 A. N. Chen, L Lu, L. J. Cheng, J. M. Wu, R. Z. Liu, S. Chen, Y. Chen, S. F. Wen, C. H. Li, Y. S. Shi, TEM analysis and mechanical strengthening mechanism
of MnO2 sintering aid in selective laser sintered porous mullites, Journal of Alloys and Compounds, 809 (2019), 151809, doi:
10.1016/j.jallcom.2019.151809
20 C. W. Nahm, Effect of MnO2 addition on microstructure and electrical properties of ZnO–V2O5-based varistor ceramics, Ceramics International, 35
(2009) 2, 541-546, doi: 10.1016/j.ceramint.2008.01.010
21 Y. M. Tian, P. F. Zhao, X. C. Kong, The Effect of Sintering Temperature on the Structure and Properties of Corundum/mullite Ceramics, Science of
Sintering, 47 (2015) 3, 273-278, doi: 10.2298/SOS1503273Y
22 V. V. Pogrebenkova, T. V Vakalova, V. V. Gorbatenko, M. V. Grekhova, Features of phase formation of mullite-corundum materials in mixtures of
kaolin with a fluoriding component, Advances in Applied Ceramic, 51 (2010), 197-201, doi: 10.1007/s11148-010-9288-3
23 X. C. Kong, Y. M. Tian, Y. S. Chai, P. F. Zhao, K. Y. Wang, Z. G. Li, Effects of pyrolusite additive on the microstructure and mechanical strength of
corundum-mullite ceramics, Ceramics International, 41 (2015) 3, 4294-4300, doi: 10.1016/j.ceramint.2014.11.116
Published
2025-10-01
How to Cite
1.
Zeng Y, Xiao N, Yang H, Yang P, Yan F, Bi S, Yu R. EFFECTS OF MANGANESE DIOXIDE AND SINTERING TEMPERATURE ON THE PROPERTIES AND MICROSTRUCTURE OF A SECONDARY-ALUMINUM-ASH CERAMIC PROPPANT. MatTech [Internet]. 2025Oct.1 [cited 2025Nov.18];59(5):793–800. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/1442