RESYNTHESIS AND ELECTROCHEMICAL PERFORMANCE OF NCM111 USING ULTRASOUND-ASSISTED LEACHATE FROM SPENT LITHIUM-ION BATTERY CATHODES

  • Honghao Yu School of Materials Science and Engineering, Shenyang Ligong University, Shenyang, Liaoning 110159, China
  • Junhui Ye School of Materials Science and Engineering, Shenyang Ligong University, Shenyang, Liaoning 110159, China
  • Nianping Li School of Materials Science and Engineering, Shenyang Ligong University, Shenyang, Liaoning 110159, China
  • Xin Li School of Materials Science and Engineering, Shenyang Ligong University, Shenyang, Liaoning 110159, China
Keywords: spent lithium-ion batteries, ultrasound-assisted leachate, resynthesis, deep eutectic solvent, LiNi1/3Co1/3Mn1/3O2

Abstract

The widespread use of lithium-ion batteries (LIBs) led to a substantial accumulation of spent cathode materials, creating an urgent need for environmentally sustainable recycling methods that address both ecological concerns and the recovery of critical metals. A novel strategy integrating ultrasound-assisted deep eutectic solvent (DES) leaching and urea-assisted co-precipitation for the regeneration of high-performance LiNi1/3Co1/3Mn1/3O2 (NCM111) cathodes from spent LiCoO2 was developed. The results revealed that the transition metal-to-urea molar ratio critically governs the structural and electrochemical properties of regenerated materials. An NCM111 sample with an optimized transition metal-to-urea ratio of 1:2 had an ordered layered structure (I(003)/I(104) = 1.336), uniform spherical secondary particles (1–3 µm), and minimal cation mixing. These structural advantages translated into exceptional electrochemical performance, including an initial Coulombic efficiency of 84.84 %, 96.13 % capacity retention after 30 cycles, low charge-transfer resistance (37.26 Ω), and enhanced redox reversibility (ΔEp = 0.21 V). Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) further confirmed the superior interfacial kinetics and reaction reversibility of the optimised sample.

References

1Do, M. P.; Jegan Roy, J.; Cao, B.; Srinivasan, M. Green ClosedLoop Cathode Regeneration from Spent NMC-Based Lithium-IonBatteries through Bioleaching. ACS Sustainable Chem. Eng. 2022, 10(8), 2634−2644.
2Jakob Fleischmann, M. H., Horetsky, E.; Ibrahim, D.; Jautelat, S.; Linder, M.; Schaufuss, P.; Torscht, L.; van de Rijt, A. Battery 2030: Resilient, sustainable, and circular; McKinsey & Company: 2023,
3Wei, Q.; Wu, Y.; Li, S.; Chen, R.; Ding, J.; Zhang, C. SpentLithium Ion Battery (LIB) Recycle from Electric Vehicles: A MiniReview. Sci. Total Environ. 2023, 866, 161380.
4 Peng, C.; Chang, C.; Wang, Z.; Wilson, B. P.; Liu, F.;Lundström, M. Recovery of high-purity MnO2 from the acid leaching solution of spent Li-ion batteries. Jom 2020, 72 (2), 790−799.
5P. Meshram, B.D. Pandey, and T.R.Mankhand, Hydrometallurgy 150, 192 (2014).
6J. Li, X. Li, Y. Zhang, Q. Hu, Z. Wang, Y. Zhou, and F. Fu, Trans. Nonferr. Metals Soc. China 19, 751 (2009).
7 S.M. Shin, N.H. Kim, J.S. Sohn, D.H. Yang, and Y.H. Kim, Hydrometallurgy 79, 172 (2005).
8C.K. Lee and K.I. Rhee, J. Power Sources 109, 17 (2002).
9 Y.J. Liu, Q.Y. Hu, X.H. Li, Z.X. Wang, and H.J. Guo, Trans. Nonferr. Metals Soc. China 16, 956 (2006).
10J.F. Paulino, N.G. Busnardo, and J.C. Afonso, J. Hazard. Mater. 150, 843 (2008)
11P. Meshram, B.D. Pandey, and T.R. Mankhand, Chem. Eng. J. 281, 418 (2015)
12D. Mishra, D.J. Kim, D.E. Ralph, J.G. Ahn, and Y.H. Rhee, Waste Manag. 28, 333 (2008).
13Pratima Meshram,. Abhilash,B.D. Pandey, et al. Comparision of Different Reductants in Leaching of Spent Lithium Ion Batteries. JOM. 2016;68 (10):2613-2623. doi:10.1007/s11837-016-2032-9
14Yuanpeng Fu et al. "Effective leaching and extraction of valuable metals from electrode material of spent lithium-ion batteries using mixed organic acids leachant". Journal of Industrial and Engineering Chemistry vol. 79,0 (2019): 154-162. doi:10.1016/j.jiec.2019.06.023
15Pier Giorgio Schiavi Selective recovery of cobalt from mixed lithium ion battery wastes using deep eutectic solvent
16Zehui Zhang,Jianghua Qiu,Min Yu, et al. Performance of Al-doped LiNi1/3Co1/3Mn1/3O2 synthesized from spent lithium ion batteries by sol-gel method. Vacuum. 2020;172 (0):109105-109105. doi:10.1016/j.vacuum.2019.109105
17Luo Xu-fang,Xianyou Wang,Li Liao, et al. Effects of synthesis conditions on the structural and electrochemical properties of layered Li[Ni1/3Co1/3Mn1/3]O2 cathode material via the hydroxide co-precipitation method LIB SCITECH. Journal of Power Sources. 2006;161 (1):601-605. doi:10.1016/j.jpowsour.2006.03.090
18Luqi Zhuang,Conghao Sun,Tao Zhou, et al. Recovery of valuable metals from LiNi0.5Co0.2Mn0.3O2 cathode materials of spent Li-ion batteries using mild mixed acid as leachant. Waste Management. 2019;85 (0):175-185. doi:10.1016/j.wasman.2018.12.034
19Tlek Ketegenov,Kaster Kamunur,Lyazzat Mussapyrova, et al. Enhanced Recovery of Lithium and Cobalt from Spent Lithium-Ion Batteries Using Ultrasound-Assisted Deep Eutectic Solvent Leaching. Metals. 2024;14 (9):1052-1052. doi:10.3390/met14091052
20Pier Giorgio Schiavi,Pietro Altimari,Mario Branchi, et al. Selective recovery of cobalt from mixed lithium ion battery wastes using deep eutectic solvent. Chemical Engineering Journal. 2021;417 (0):129249-129249. doi:10.1016/j.cej.2021.129249
21Yi Luo,Leming Ou,Chengzhe Yin. High-efficiency recycling of spent lithium-ion batteries: A double closed-loop process. Science of The Total Environment. 2023;875 (0):162567-162567. doi:10.1016/j.scitotenv.2023.162567
Published
2025-10-01
How to Cite
1.
Honghao Yu, Junhui Ye, Nianping Li, Xin Li. RESYNTHESIS AND ELECTROCHEMICAL PERFORMANCE OF NCM111 USING ULTRASOUND-ASSISTED LEACHATE FROM SPENT LITHIUM-ION BATTERY CATHODES. MatTech [Internet]. 2025Oct.1 [cited 2025Nov.18];59(5):785–791. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/1431