SYNTHESIS OF MORPHOLOGY-CONTROLLED ZnO NANOSTRUCTURES AND EVALUATION OF THEIR PHOTOCATALYTIC AND GAS-SENSING PROPERTIES
Abstract
ZnO samples with two distinct morphologies (porous particles and grenade-like structures) were synthesized via a sol-gel-hydrothermal method in a water-ethylene glycol binary solvent. By tuning the zinc precursor concentration, the morphologies were precisely controlled. In the investigation of photocatalytic properties, we evaluated the material’s ability to degrade the organic dye Rhodamine B (RB) under UV light. Additionally, we analyzed the active radicals generated during photocatalysis and evaluated the material’s recyclability. In the study of gas-sensing properties, we conducted a series of performance tests under various conditions, including temperature, gas concentration, cycle stability, response and recovery times, and comparative responses in different atmospheres. Our results showed that the samples exhibited superior ethanol selectivity. Moreover, all samples exhibited excellent cycle stability and fast response times. The small size and porous structure of the samples significantly enhanced their gas-sensing performance by providing ample channels and space for gas diffusion and reaction during testing. This unique morphology significantly improved the material’s gas-sensing performance.
References
[2] S. T. KOCHUVEEDU, Y. H. JANG, D. H. KIM. A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications, Chem. Soc. Rev., 42(2013), 8467-8493.
[3] M. PERALTA, U. PAL, R. ZEFERINO. Photoluminescence (PL) Quenching and Enhanced Photocatalytic Activity of Au-Decorated ZnO Nanorods Fabricated through Microwave-Assisted Chemical Synthesis, ACS Appl. Mater. Interfaces, 4(2012), 4807-4816.
[4] L. SUN, D. ZHAO, Z. SONG, C. SHAN, Z, ZHANG, B. LI, D. SHEN. Gold nanoparticles modified ZnO nanorods with improved photocatalytic activity, J. Colloid Interface Sci., 363(2011), 175-181.
[5] M. R. HOFFMANN, S. T. MARTIN, W. CHOI, D. W. BAHNEMANN. Environmental applications of semiconductor photocatalysis, Chem. Rev., 95(1995), 69-96.
[6] N. SERPONE, A. V. EMELINE. Semiconductor photocatalysis: past, present, and future outlook, J. Phys. Chem. Lett., 3(2012), 673-677.
[7] S. SENAPATI, S. K. SRIVASTAVA, S. B. SINGH. Synthesis, characterization and photocatalytic activity of magnetically separable hexagonal Ni/ZnO nanostructure, Nanoscale, 4(2012), 6604-6612.
[8] T. WANG, S. S. XU, N. T. HU, H. JUN, J. DA. Microwave preparation and remarkable ethanol sensing properties of ZnO particles with controlled morphologies in water-ethylene glycol binary solvent system, SENSOR ACTUAT B-CHEM, 255(2018), 1006-1014.
[9] X. GENG, J. J. YOU, C. ZHANG. Microstructure and sensing properties of CdS-ZnO1-x coatings deposited by liquid plasma spray and treated with hydrogen peroxide solution for nitrogen dioxide detection at room temperature, Journal of Alloys and Compounds, 687(2016), 286-293.
[10] F. Y. FAN, J. J. ZHANG, J. LI, N. ZHANG, R. R. HONG, X. C. DENG, P.G. TANG, D.Q. LI. Hydrogen sensing properties of Pt-Au bimetallic nanoparticles loaded on ZnO nanorods, SENSOR ACTUAT B-CHEM, 241(2017), 895-903.
[11] X. X. XING, T. CHEN, R. J. ZHAO, Z. Z. WANG, Y. D. WANG. A low temperature butane gas sensor used Pt nanoparticles-modified AZO macro/mesoporous nanosheets as sensing material, SENSOR ACTUAT B-CHEM, 254(2018), 227-238.
[12] H. CHEN, S. Y. MA, H. Y. JIAO, G. J. YANG, X. L. XU, T. T. WANG, X. H. JIANG, Z.Y. ZHANG. The effect microstructure on the gas properties of Ag doped zinc oxide sensors: Spheres and sea-urchin-like nanostructures, J. Alloys Compd., 687(2016), 342-351.
[13] X. LIU, Y. SUN, M. YU, Y Yin, B. DU, W. TANG, T. JIANG, B. YANG, W. CAO. Enhanced ethanol sensing properties of ultrathin ZnO nanosheets decorated with CuO nanoparticles, SENSOR ACTUAT B-CHEM, 255(2018), 3384-3390.
[14] N. F. HAMEDANI, A. R. MAHJOUB, A. A. KHODADADI, Y. MORTAZAVI. CeO2 doped ZnO flower-like nanostructure sensor selective to ethanol in presence of CO and CH4, SENSOR ACTUAT B-CHEM, 169(2012), 67-73.
[15] H. Q. BIAN, S. Y. MA, A. M. SUN, X. L.XU, G. J. YANG, S. H. YAN, J. M. GAO, Z. M. ZHANG, H. B. ZHU. Improvement of acetone gas sensing performance of ZnO nanoparticles, J. Alloys Compd., 658(2016), 629-635.
[16] B. Q. HAN, X. LIU, X. X. XING, N. CHEN, X. C. XIAO, S. Y. LIU, Y. D. WANG. A high response butanol gas sensor based on ZnO hollow spheres, SENSOR ACTUAT B-CHEM, 237(2016), 423-430.
[17] L. ZHU, Y. Q. LI, W. ZENG. Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties, Appl. Surf. Sci., 427(2018), 281-287.
[18] S. K. WU, X. P. SHEN, G. X. ZHU, H. ZHOU, Z. Y. JI, K. M. CHEN, A. H. YUAN. Synthesis of ternary Ag/ZnO/ZnFe2O4 porous and hollow nanostructures with enhanced photocatalytic activity, Appl. Catal., B, 184(2016), 328-336.
[19] R. GUPT, N. K. R. ESWAR, J. M. MODAK, G. MADRAS. Effect of morphology of zinc oxide in ZnO-CdS-Ag ternary nanocomposite towards photocatalytic inactivation of E. coli under UV and visible light, Chem. Eng. J., 307(2017), 966-980.
[20] F. P. PENG, Q. ZHOU, C. H. LU, Y. R. NI, J. H. KOU, Z. Z. XU. Construction of (001) facets exposed ZnO nanosheets on magnetically driven cilia film for highly active photocatalysis, Appl. Surf. Sci., 394(2017), 115-124.
[21] C. LI, C. FENG, F. QU, J. LIU, L. ZHU, Y. LIN, Y. WANG, F. LI, J. ZHOU, S. RUAN. Electrospun nanofibers of p-type NiO/n-type ZnO heterojunction with different NiO content and its influence on trimethylamine sensing properties, SENSOR ACTUAT B-CHEM, 207(2015), 90-96.
[22] M. AKERMI, N. SAKLY, R. B. CHAABANE, H. B. OUADA. Effect of PEG-400 on the morphology and electrical properties of ZnO nanoparticles application for gas sensor, Mater. Sci. Semicond. Process., 16(3)(2013), 807-817.
[23] R. FERRO. The effect of the material morphology on the response of the NO2 sensor based on ZnO thin film, SENSOR ACTUAT B-CHEM, 143(1)(2009), 99-102.
[24] J. Y. LIU, T. S. WANG, B. Q. WANG, P. SUN, Q. Y. YANG, G. Y. LU. Highly sensitive and low detection limit of ethanol gas sensor based on hollow ZnO/SnO2 spheres composite material, SENSOR ACTUAT B-CHEM, 245(2017), 551-559.
[25] K. VASANTHKUMAR, K. PORKODI, F. ROCHA. Langmuir–Hinshelwood kinetics-A theoretical study, Catal. Commun., 9 (1)(2008), 82-84.
[26] L. WANG, Z. Y. JI, J. J. LIN, P. LI. Preparation and optical and photocatalytic properties of Ce-doped ZnO microstructures by simple solution method, Mater. Sci. Semicond. Process., 71(2017), 401-408.
[27] C. LI, Y. LIN, F. LI, L. H. ZHU, D. M. SUN, L. SHEN, Y. CHEN, S. P. RUAN. Hexagonal ZnO nanorings: synthesis, formation mechanism and trimethylamine sensing properties, RSC Adv., 5(98)(2015), 80561-80567.
[28] L. SHI, J. CUI, F. ZHAO, D. WANG, Y. LIN. High-performance formaldehyde gas-sensors based on three dimensional center-hollow ZnO, Phys. Chem. Chem. Phys., 17(2015), 31316-31323.
[29] Y. TIAN, J. C. LI, H. XIONG, J. N. DAI. Controlled synthesis of ZnO hollow microspheres via precursor-template method and its gas sensing property, Appl. Surf. Sci., 258(2012), 8431-8438.
[30] S. H. YAN, S. Y. MA, W. Q. LI, X. L. XU, L. CHENG, H. S. SONG, X. Y. LIANG. Synthesis of SnO2-ZnO heterostructured nanofibers for enhanced ethanol gas-sensing performance, SENSOR ACTUAT B-CHEM, 221(2015), 88-95.
[31] L. ZHU, W. ZENG. Room-temperature gas sensing of ZnO-based gas sensor: A review, Sensor Actuat A-phys, 267(2017), 242-261.
[32] R. J. ZHAO, K. J. LI, Z. Z. WANG, X. X. XING, Y. D. WANG. Gas-sensing performances of Cd-doped ZnO nanoparticles synthesized by a surfactant-mediated method for n-butanol gas, J. Phys. Chem. Solids, 112(2018), 43-49.
[33] M. L. YIN, M. D. LIU, S. Z. LIU. Diameter regulated ZnO nanorod synthesis and its application in gas sensor optimization, J. Alloys Compd., 586(2014), 436-440.
[34] X. L. DENG, L. L. ZHANG, J. GUO, Q. J. CHEN, J. M. MA. ZnO enhanced NiO-based gas sensors towards ethanol, Mater. Res. Bull., 90(2017), 170-174.