INFLUENCE OF PLASMA NITRIDING PARAMETERS ON THE MECHANICAL PROPERTIES OF 25Cr2Ni4W STEEL
Abstract
In this study, plasma nitriding was applied to 25Cr2Ni4W low-alloy steel to improve its mechanical and tribological surface properties. The investigation focused on varying the negative bias voltage while keeping the discharge power, pressure, and holding time constant. The substrate temperature increased due to the self-induced heating mechanism. The compound layer of the treated samples revealed the formation of nitride phases (ε-Fe2-3N and γ'-Fe4N), as observed through XRD analysis and optical microscopy. A phase transition was noted between 2.0 kV and 3.5 kV, accompanied by an increase in the volume fraction of the γ '-Fe4N phase and a decrease in the volume fraction of the ε -Fe2-3N phase. When comparing the nitrogen-implanted samples to their untreated counterparts, an increase in nanohardness was observed, suggesting that the nitride phases contributed to the hardening.
References
2ASM Handbook Committee, Properties and Selection: Irons, Steels, and High-Performance Alloys, ASM International,(1990).
3 F. Masuyama, Low-alloyed steel grades for boilers in ultra-supercritical power plants, in: A. Di Gianfrancesco (Ed.), Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants, Woodhead Publishing,( 2017), pp. 53–76.
4 K.-M. Winter, J. Kalucki, D. Koshel, Process technologies for thermochemical surface engineering, in: Thermochemical Surface Engineering of Steels,( 2015), pp. 141–206.
5 A.R. West, Solid State Chemistry and Its Applications, John Wiley & Sons,( 2014).
6 H.A. Wriedt, N.A. Gokcen, R.H. Nafziger, Bull. Alloy Phase Diagr., 8 (1987), 355.
7 M. Sommer, et al., Variation of the compound layer structure by controlled gas nitriding and nitrocarburizing, HTM J. Heat Treatm. Mat., 77 (2022), 214–227. https://doi.org/10.1515/htm-2022-1011
8 S. Thibault, et al., A simple model for hardness and residual stress profiles prediction for low-alloy nitrided steel, based on nitriding-induced tempering effects, HTM J. Heat Treatm. Mat., 73 (2018), 235–245. https://doi.org/10.3139/105.110360
9A. Gramlich, et al., Plasma Nitriding of an Air-Hardening Medium Manganese Forging Steel, HTM J. Heat Treatm. Mat., 77 (2022), 298–315. https://doi.org/10.1515/htm-2022-1017
10 M.S. Aggoune, L. Torchane, Optimization and control of gaseous nitriding of a 33CrMoV12-9 steel, J. Mater. Testing.,( 2023).
11 P.A. Kruglenya, O.Y. Maslennikov, Appl. Surf. Sci., 215 (2003), 101–104.
12 H. Oyama, N. Shiramatsu, Displays, 23 (2002), 31–39.
13 D. Sun, G.K. Stylios, J. Proc. Technol., 173 (2006), 172–177.
14 S.Y. Park, B.R. Deshwal, S.H. Moon, Fuel Proc. Technol., 89 (2008), 540–548.
15 F. Rousseau, S. Awamat, M. Nikravech, D. Morvan, J. Amouroux, Surf. Coat. Technol., 202 (2007), 1226–1230.
16 A. Brysbaert, K. Melessanaki, D. Anglos, J. Archaeol. Sci., 33 (2006), 1095–1104.
17 M. Moisan, J. Barbeau, S. Moreau, J. Pelletier, M. Tabrizian, L’H. Yahia, Int. J. Pharmaceutics, 226 (2001), 1–21.
18 Z. Xu, F.F. Xiong, Plasma Surface Metallurgy, Springer, 2008.
19 Y. Sun, E. Haruman, Effect of carbon addition on low-temperature plasma nitriding characteristics of austenitic stainless steel, Vacuum, 81 (2006), 114–119.
20 Y. Setrsuhara, S. Miyake, Y. Sakawa, T. Shoji, Surf. Coat.
Technol. 136, 60 (2001)
21 A. Anders, Surf. Coat. Technol. 200, 1893 (2005)
22Z.J. Wang, X.B. Tian, C.Z. Gong, J.W. Shi, S.Q. Yang,
R.K.Y. Fu, P.K. Chu, Surf. Coat. Technol. 206, 5042
(2012)
23 H.A. Wriedt, N.A. Gokcen, R.H. Nafziger, Bull. Alloy Phase Diagr., vol. 8, 1987, p. 355.