RECENT PROGRESS IN OXIDE-DISPERSION-STRENGTHENED (ODS) ALLOYS PRODUCED BY ADDITIVE MANUFACTURING

  • Paul McGuiness Institute of Metals and Technology, Lepi pot 11, Ljubljana, Slovenia
  • Irena Paulin Institute of Metals and Technology, Lepi pot 11, Ljubljana, Slovenia
  • Črtomir Donik Institute of Metals and Technology, Lepi pot 11, Ljubljana, Slovenia
  • Anna Dobkowska Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
  • Jirí Kubásek Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Prague, Czech Republic
  • Jan Pokorny Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Prague, Czech Republic
Keywords: Oxide-dispersion-strengthened alloys, additive manufacturing, recent progress and research

Abstract

Oxide-dispersion-strengthened (ODS) alloys exhibit exceptional mechanical properties, making them ideal for high-temperature applications in areas such as aerospace and nuclear reactors. The traditional manufacturing of ODS alloys involves mechanical alloying, followed by processes such as hot extrusion and hot isostatic pressing. However, these methods are limited when it comes to producing complex geometries. Recent advances in additive manufacturing (AM) techniques, specifically selective laser melting (SLM) and directed-energy deposition (DED), offer exciting new possibilities for fabricating ODS alloys. Early research demonstrated the feasibility of using SLM to create complex parts with uniformly dispersed oxide particles, thereby enhancing the materials’ properties. Subsequent studies confirmed that optimising the SLM parameters could further improve the mechanical performance of ODS alloys. DED techniques have also shown promise, with innovations like in-situ oxide formation during deposition and high-speed laser cladding. These methods have achieved success by producing ODS materials with refined microstructures and enhanced mechanical properties. The latest research continues to explore the potential of AM for ODS alloys, focusing on improving the dispersion of nanoparticles and minimising the tendency of particles to agglomerate. Overall, AM has advanced the fabrication of ODS alloys by offering efficient production routes and the ability to create intricate designs with superior properties.

References

1 R. Xu, Z. Geng, Y. Wu, C. Chen, M. Ni, D. Li, T. Zhang, H. Huang, F. Liu, R. Li, K. Zhou, Microstructure and mechanical properties of in-situ oxide-dispersion-strengthened NiCrFeY alloy produced by laser powder bed fusion, Advanced Powder Materials, 1 (2022), 4, 100056, doi:10.1016/j.apmate.2022.100056

2 P. Wang, Z. Qi, Q. Li, Y. Zhang, X. Cheng, X. Wu, S. Mei, Simultaneously improving the strength and ductility of an oxide dispersion-strengthened high-entropy alloy by employing innovative precursors for oxide formation, Journal of Alloys and Compounds, 1005 (2024), 176192, doi:10.1016/j.jallcom.2024.176192.

3 Y. Zhang, K. Lu, F. Jiang, Y. Chen, X. Liang, Superior strength-ductility synergy of an oxide-dispersion strengthened CoCrNi-based multi-principal element alloy. Materials Research Letters, 12 (2024) 11, 825–833. doi:10.1080/21663831.2024.2393166

4 R. Kocich, L. Kunčická, P. Král, K. Dvořák, Mechanical Behavior of Oxide Dispersion Strengthened Steel Directly Consolidated by Rotary Swaging. Materials, 17 (2024) 19, 4831. doi:10.3390/ ma17194831

5 M. B. Wilms, S.-K. Rittinghaus, M. Goßling, B. Gökce, Additive manufacturing of oxide-dispersion strengthened alloys: Materials, synthesis and manufacturing, Progress in Materials Science, 133 (2023), 101049, doi:10.1016/j.pmatsci.2022.101049

6 S. M. S. Aghamiri, N. Oono, S. Ukai, R. Kasada, H. Noto, Y. Hishi¬numa, T. Muroga, Microstructure and mechanical properties of mechanically alloyed ODS copper alloy for fusion material application, Nuclear Materials and Energy, 15 (2018), 17–22, doi:10.1016/j.nme.2018.05.019

7 P. Unifantowicz, Z. Oksiuta, P. Olier, Y. de Carlan, N. Baluc, Microstructure and mechanical properties of an ODS RAF steel fabricated by hot extrusion or hot isostatic pressing, Fusion Engineering and Design, 86 (2011) 9–11, 2413–2416, doi:10.1016/j.fusengdes. 2011.01.022.

8 Z. Oksiuta, M. Lewandowska, K.J. Kurzydlowski, N. Baluc, Influence of hot rolling and high speed hydrostatic extrusion on the micro¬structure and mechanical properties of an ODS RAF steel, Journal of Nuclear Materials, 409 (2011) 2, 86–93, doi:10.1016/ j.jnucmat.2010.09.019

9 B. Reppich, On the dispersion strengthening mechanisms in ODS materials. Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques. (2002) 93, 605–613

10 D. Pazos, A. Cintins, V. de Castro, P. Fernández, J. Hoffmann, W. García Vargas, T. Leguey, J. Purans, A. Anspoks, A. Kuzmin, I. Iturriza, N. Ordás, ODS ferritic steels obtained from gas atomized powders through the STARS processing route: Reactive synthesis as an alternative to mechanical alloying, Nuclear Materials and Energy, 17 (2018), 1–8, doi:10.1016/j.nme.2018.06.014

11 C. Doñate-Buendía, F. Frömel, M. B. Wilms, R. Streubel, J. Tenkamp, T. Hupfeld, M. Nachev, E. Gökce, A. Weisheit, S. Barcikowski, F. Walther, J. H. Schleifenbaum, B. Gökce, Oxide dispersion-strengthened alloys generated by laser metal deposition of laser-generated nanoparticle-metal powder composites, Materials & Design, 154 (2018), 360–369, doi:10.1016/j.matdes. 2018.05.044.

12 C. Dai, C. Schade, D. Apelian, et al. Processing Techniques for ODS Stainless Steels. Metall Mater Trans B 49 (2018), 3043–3055, doi:10.1007/s11663-018-1429-y

13 T. Kaito, T. Narita, S. Ukai, Y. Matsuda, High temperature oxidation behavior of ODS steels, Journal of Nuclear Materials, 329–333B (2004), 1388–1392, doi:10.1016/j.jnucmat. 2004.04.203

14 E. Macía, A. García-Junceda, M. Serrano, S. J. Hong, M. Campos, Effect of mechanical alloying on the microstructural evolution of a ferritic ODS steel with (Y–Ti–Al–Zr) addition processed by Spark Plasma Sintering (SPS), Nuclear Engineering and Technology, 53 (2021) 8, 2582–2590, doi:10.1016/j.net.2021.02.002

15 X. Zhou, Y. Liu, L. Yu, Z. Ma, Q. Guo, Y. Huang, H. Li, Micro¬structure characteristic and mechanical property of transformable 9Cr-ODS steel fabricated by spark plasma sintering, Materials & Design, 132 (2017), 158–169, doi:10.1016/j.matdes.2017. 06.063.

16 J. Fu, J.C. Brouwer, I. M. Richardson, M. J. M. Hermans, Effect of mechanical alloying and spark plasma sintering on the micro¬structure and mechanical properties of ODS Eurofer, Materials & Design, 177 (2019), 107849, doi:10.1016/j.matdes.2019. 107849

17 L. E. T. Mathias, V. E. Pinotti, B. F. Batistão, et al. Metal powder as feedstock for laser-based additive manufacturing: From production to powder modification. Journal of Materials Research 39 (2024), 19–47, doi:10.1557/s43578-023-01271-8

18 X Zhang, C. J. Yocom, B. Mao, Y. Liao, Microstructure evolution during selective laser melting of metallic materials: A review. Journal of Laser Applications. 31 (2019), 31201. 10.2351/1.5085206

19 J. Walker, K. Berggreen, A. R. Jones, C. Sutcliffe, Fabrication of Fe–Cr–Al Oxide Dispersion Strengthened PM2000 Alloy Using Selective Laser Melting. Advanced Engineering Materials. 11 (2009), 541–546. 10.1002/adem.200800407

20 T. Boegelein, S. Dryepondt, A. Pandey, K. Dawson, G.. Tatlock, Mechanical response and deformation mechanisms of ferritic oxide dispersion strengthened steel structures produced by selective laser melting. Acta Materialia. (2015), 87. 10.1016/j.actamat.2014.12.047

21 T. Boegelein, E. Louvis, K. Dawson, G. J. Tatlock, A. R. Jones, Characterisation of a complex thin walled structure fabricated by selective laser melting using a ferritic oxide dispersion strengthened steel, Materials Characterization, 112 (2016), 30–40, doi:10.1016/ j.matchar.2015.11.021

22 R. M. Hunt, K. J. Kramer, B. El-Dasher, Selective laser sintering of MA956 oxide dispersion strengthened steel. Journal of Nuclear Materials 464 (2015), 80–85. doi:10.1016/j.jnucmat.2015. 04.011

23 O. O. Salman, A. Funk, A. Waske, J. Eckert, S. Scudino, Additive Manufacturing of a 316L Steel Matrix Composite Reinforced with CeO2 Particles: Process Optimization by Adjusting the Laser Scanning Speed. Technologies (2018, 6, 25. doi:10.3390/ technologies6010025

24 H. Springer, C. Baron, A. Szczepaniak, E.A. Jägle, M.B. Wilms, A. Weisheit, D. Raabe, Efficient additive manufacturing production of oxide- and nitride-dispersion-strengthened materials through atmospheric reactions in liquid metal deposition, Materials & Design, Volume 111, 2016, 60–69, doi:10.1016/j.matdes.2016. 08.084

25 C. Kenel, G. Dasargyri, T. Bauer, A. Colella, A. B. Spierings, C. Leinenbach, K. Wegener, Selective laser melting of an oxide dispersion strengthened (ODS) -TiAl alloy towards production of complex structures, Materials & Design, 134 (2017), 81–90, doi:10.1016/ j.matdes.2017.08.034

26 R. Streubel, M. Wilms, C. Doñate-Buendía, A. Weisheit, S. Barci¬kowski, J. Schleifenbaum, B. Gökce, Depositing laser-generated nanoparticles on powders for additive manufacturing of oxide dispersed strengthened alloy parts via laser metal deposition. Japanese Journal of Applied Physics. (2018), 57, 040310. doi:10.7567/JJAP. 57.040310

27 M. Wilms, R. Streubel, F. Stern, A. Weisheit, J. Tenkamp, F. Walther, S. Barcikowski, J. Schleifenbaum, B.Gökce, Laser additive manufacturing of oxide dispersion strengthened steels using laser-generated nanoparticle-metal composite powders, Procedia CIRP. 74 (2018), 196–200, 10.1016/j.procir.2018.08.093

28 C. Doñate-Buendía, R. Streubel, P. Kürnsteiner, M. Wilms, F. Stern, J. Tenkamp, E. Bruder, S. Barcikowski, B. Gault, K. Durst, J. Schleifenbaum, F. Walther, B. Gökce, Effect of nanoparticle additivation on the microstructure and microhardness of oxide dispersion strengthened steels produced by laser powder bed fusion and directed energy deposition. Procedia CIRP. (2020). 94. doi:10.1016/ j.procir.2020.09.009

29 Z. Min, S. Parbat, L. Yang, B. Kang, M. Chyu, Fabrication and Characterization of Additive Manufactured Nickel-Based Oxide Dispersion Strengthened Coating Layer for High-Temperature Application. Journal of Engineering for Gas Turbines and Power. (2017). 140. doi:10.1115/1.4038351

30 S.-K. Rittinghaus, M. Wilms, Oxide dispersion strengthening of -TiAl by laser additive manufacturing. Journal of Alloys and Compounds. (2019). 804. 10.1016/j.jallcom.2019.07.024

31 B. Arkhurst, J.-J Park, C.-H Lee, J. H. Kim. Direct Laser Deposition of 14Cr Oxide Dispersion Strengthened Steel Powders Using Y2O3 and HfO2 Dispersoids. Journal of Korean Institute of Metals and Materials. 55 (2017), 550–558, 10.3365/KJMM.2017.55.8.550

32 Y. Shi, Z. Lu, H. Xu, R. Xie, Y. Ren, G. Yang, Microstructure characterization and mechanical properties of laser additive manufactured oxide dispersion strengthened Fe-9Cr alloy, Journal of Alloys and Compounds, 791 (2019), 121–133, doi:10.1016/j.jallcom. 2019.03.284

33 Y. Shi, Z. Lu, L. Yu, R. Xie, Y. Ren, G. Yang, Microstructure and tensile properties of Zr-containing ODS-FeCrAl alloy fabricated by laser additive manufacturing, Materials Science and Engineering: A, 774 (2020), 138937, doi:10.1016/j.msea.2020.138937

34 Duy Nghia Luu, Wei Zhou, Sharon Mui Ling Nai, Influence of nano-Y2O3 addition on the mechanical properties of selective laser melted Inconel 718, Materials Science and Engineering: A, 845 (2022), 143233, doi:10.1016/j.msea.2022.143233.

35 D. Sakuma, S. Yamashita, K. Oka, S. Ohnuki, L. E Rehn, E. Wakai, Y2O3 nano-particle formation in ODS ferritic steels by Y and O dual ion-implantation. Journal of Nuclear Materials. 329 (2004), 392–396, 10.1016/j.jnucmat.2004.04.039

36 L. Zhang, S. Ukai, T. Hoshino, S. Hayashi, X. Qu, Y2O3 evolution and dispersion refinement in Co-base ODS alloys. Acta Materialia. 57 (2009), 3671–3682, 10.1016/j.actamat.2009.04.033

37 S. Sivasankaran, E.-S. M. Sherif, H. R. Ammar, A. S. Alaboodi, A.-b.H. Mekky, Influence of Oxide Dispersions (Al2O3, TiO2, and Y2O3) in CrFeCuMnNi High-Entropy Alloy on Microstructural Changes and Corrosion Resistance. Crystals (2023), 13, 605, doi:10.3390/cryst13040605

38 Y. Sun, Q. Liu, S.Z. Diao, F.Q. Zhao, N.H. Oono, S. Ukai, S. Ohnuki, H.H. Zhu, Y. Wu, F.R. Wan, Q. Zhan, Response of oxide nano-particles to helium ion irradiation in oxide dispersion strengthened steels with CeO2 and Y2O3 additions, Journal of Nuclear Materials, 605 (2025), 155580, doi:10.1016/j.jnucmat.2024.155580.

39 E. Simondon, P.-F. Giroux, J. Ribis, G. Spartacus, L. Chaffron, T. Gloriant, Innovative method of ODS steels manufacturing by direct introduction of pyrochlore phase through milling, Materials Characterization, 181 (2021), 111461, doi:10.1016/j.matchar.2021.111461

40 O. Khalaj, H. Jirková, B. Mašek, J. Svoboda. Microstructure Evaluation of New ODS Alloys with Fe-Al Matrix and Al2O3 Particles. In Proceedings of the 2017 International Conference on Industrial Design Engineering (ICIDE 2017). Association for Computing Machinery, New York, NY, USA, (2017), 11–15, doi:10.1145/ 3178264.3178273

41 T. Huang, Y. Shen, Al2O3 Regions/Grains in ODS Steel PM2000 Irradiated With Fe Ions at 700 °C. Metall Mater Trans A 54 (2023), 952–961, doi:10.1007/s11661-022-06947-0

42 Q. Zhao, L. Yu, Y. Liu, Y. Huang, Q. Guo, H. Li, J. Wu, Evolution of Al-containing phases in ODS steel by hot pressing and annealing. Powder Technology. (2017), 311. 10.1016/j.powtec.2017.02.016

43 O. Khalaj, H. Jirková, B. Mašek, J. Svoboda, Microstructure Evaluation of New ODS Alloys with Fe-Al Matrix and Al2O3 Particles. (2017), 11–15, 10.1145/3178264.3178273

44 R. Husák, H. Hadraba, Z. Chlup, M. Heczko, T. Kruml, V. Puchý, ODS EUROFER Steel Strengthened by Y-(Ce, Hf, La, Sc, and Zr) Complex Oxides. Metals, (2019) 9, 1148, doi:10.3390/met9111148

45 J. Ribis, 1.09 – Phase Stability in Irradiated Alloys, Editor(s): J. M. Rudy Konings, R. E. Stoller, Comprehensive Nuclear Materials (Second Edition), Elsevier, 2020, 265–309, doi:10.1016/B978-¬0-12-¬803581-8.11647-9

46 Y. Uchida, S. Ohnuki, N. Hashimoto, T. Suda, T. Nagai, T. Shiba¬yama, K. Hamada, N. Akasaka, S. Yamashita, S. Ohstuka, T. Yoshi¬take, Effect of Minor Alloying Element on Dispersing Nanoparticles in ODS Steel. MRS Proceedings. (2011). 981. doi:10.1557/PROC-¬981-0981-JJ07-09

47 M. B., Wilms, N. Pirch, B. Gökce, Manufacturing oxide-dispersion-strengthened steels using the advanced directed energy deposition process of high-speed laser cladding. Prog Addit Manuf 8, (2023), 159–167, doi:10.1007/s40964-022-00319-1

48 M. Wilms, S.-K. Rittinghaus, Laser Additive Manufacturing of Oxide Dispersion-Strengthened Copper-Chromium-Niobium Alloys. Journal of Manufacturing and Materials Processing, (2022), 6, doi:10.3390/jmmp6050102

49 J. A. Glerum, A. De Luca, M. L. Schuster, C. Kenel, C. Leinenbach, D. C. Dunand, Effect of oxide dispersoids on precipitation-strengthened Al-1.7Zr (wt %) alloys produced by laser powder-bed fusion, Additive Manufacturing, 56 (2022), 102933, doi:10.1016/j.addma. 2022.102933

50 L. Autones, P. Aubry, J. Ribis, H. Leguy, A. Legris, Y. de Carlan, Assessment of Ferritic ODS Steels Obtained by Laser Additive Manufacturing. Materials (2023) 16, 2397. doi:10.3390/ma16062397

51 M. B. Wilms, S.-K. Rittinghaus, M. Goßling, B. Gökce, Additive manufacturing of oxide-dispersion strengthened alloys: Materials, synthesis and manufacturing, Progress in Materials Science, 133 (2023), 101049, ISSN 0079-6425, doi:10.1016/j.pmatsci.2022. 101049

52 S. H. Chung, T. Lee, W. Jeong, B. Seo Kong, H. Jin Ryu, Additive manufacturing of oxide dispersion-strengthened CoCrNi medium-entropy alloy by in situ oxide synthesis, Journal of Alloys and Compounds, 965 (2023), 171340, doi:10.1016/j.jallcom.2023.171340

Published
2025-02-04
How to Cite
1.
McGuiness P, Paulin I, Donik Črtomir, Dobkowska A, Kubásek J, Pokorny J. RECENT PROGRESS IN OXIDE-DISPERSION-STRENGTHENED (ODS) ALLOYS PRODUCED BY ADDITIVE MANUFACTURING. MatTech [Internet]. 2025Feb.4 [cited 2025Mar.25];59(1):3–10. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/1364