MICROSTRUCTURE AND MECHANICAL PROPERTIES OF REFRACTORY HIGH-ENTROPY ALLOY HfMoNbTiCr
Abstract
A new refractory alloy, HfMoNbTiCr, was obtained by replacing Zr with Cr or Mo in the HfMoNbTiZr or HfNbTiCrZr alloys using vacuum arc melting. The phase components, microstructures and compressive properties of the alloy in the as-cast and annealed states were investigated. The results showed that the phase components changed from a single BCC phase in HfMoNbTiZr and BCC+Laves phases in HfNbTiCrZr to multiple phases – primarily two BCC phases and two cubic Laves phases – in HfMoNbTiCr. Notably, the yield and ultimate compressive strength of the as-cast alloy significantly increased from 1719 and 1803 MPa to 1851 and 2489 MPa, without a decrease in the ductility. The stress fields induced by Mo and the Cr-containing Laves phases were responsible for the enhanced strength, while the stiff network-like framework composed of intrinsically-strong Cr-containing Laves phases may have played a vital role in retaining the ductility.
References
2 M. H. Tsai, J. W. Yeh, High-entropy alloys: a critical review, Materials Research Letters, 2 (2014) 3, 107–123, doi:10.1080/ 21663831.2014.912690
3 Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw, Z. P. Lu, Microstructures and properties of high-entropy alloys, Progress in Materials Science, 61 (2014) 1–93, doi:10.1016/j.pmatsci. 2013.10.001
4 J. Yi, S. Tang, M. Xu, L. Yang, L. Wang, L. Zeng, A novel Al0.5CrCuNiV 3d transition metal high-entropy alloy: Phase analysis, microstructure and compressive properties, Journal of Alloys and Compounds, 846 (2020) 156466, doi:10.1016/j.jallcom.2020. 156466
5 O. N. Senkov, S. V. Senkova, D. B. Miracle, C. Woodward, Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system, Materials Science and Engineering: A, 565 (2013) 51–62, doi:10.1016/j.msea.2012.12.018
6 É. Fazakas, V. Zadorozhnyy, L. K. Varga, A. Inoue, D. V. Louz¬guine-¬Luzgin, F. Tian, L. Vitos, Experimental and theoretical study of Ti20Zr20Hf20Nb20X20 (X=V or Cr) refractory high-entropy alloys, International Journal of Refractory Metals and Hard Materials, 47 (2014) 131–138, doi:10.1016/j.ijrmhm.2014.07.009
7 O. N. Senkov, C. Woodward, D. B. Miracle, Microstructure and Properties of Aluminum-Containing Refractory High-Entropy Alloys, JOM, 66 (2014) 10, 2030–2042, doi:10.1007/s11837-¬014-¬1066-0
8 O. N. Senkov, S. V. Senkova, C. Woodward, Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys, Acta Materialia, 68 (2014) 214–228, doi:10.1016/j.actamat. 2014.01.029
9 B. Gorr, M. Azim, H. J. Christ, T. Mueller, D. Schliephake, M. Heilmaier, Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys, Journal of Alloys and Compounds, 624 (2015) 270–278, doi:10.1016/j.jallcom. 2014.11.012
10 J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, S. Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Advanced Engineering Materials, 6 (2004) 299–303, doi:10.1002/adem. 200300567
11 B. Cantor, I. T. H. Chang, P. Knight, A. J. B. Vincent, Micro¬structural development in equiatomic multicomponent alloys, Materials Science and Engineering: A, 375–377 (2004) 213–218, doi:10.1016/j.msea.2003.10.257
12 O. N. Senkov, G. B. Wilks, D. B. Miracle, C. P. Chuang, P. K. Liaw, Refractory high-entropy alloys, Intermetallics, 18 (2010) 9, 1758–1765, doi:10.1016/j.intermet.2010.05.014
13 O. N. Senkov, G. B. Wilks, J. M. Scott, D. B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics, 19 (2011) 5, 698–706, doi:10.1016/j.intermet.2011.01.004
14 O. N. Senkov, J. M. Scott, S. V. Senkova, D. B. Miracle, C. F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, Journal of Alloys and Compounds, 509 (2011) 20, 6043–6048, doi:10.1016/j.jallcom.2011.02.171
15 X. Jin, Y. Liang, J. Bi, B. Li, Non-monotonic variation of structural and tensile properties with Cr content in AlCoCrxFeNi2 high entropy alloys, Journal of Alloys and Compounds, 798 (2019) 243–248, doi:10.1016/j.jallcom.2019.05.211
16 M. G. Poletti, G. Fiore, B. A. Szost, L. Battezzati, Search for high entropy alloys in the X-NbTaTiZr systems (X=Al, Cr, V, Sn), Journal of Alloys and Compounds, 620 (2015) 283–288, doi:10.1016/ j.jallcom.2014.09.145
17 Y. Chen, S. Zhu, X. Wang, B. Yang, Z. Ren, G. Han, S. Wen, The strength-ductility balance of Al0·4CoCu0.6NiTix (x=1.0) and Al0·4CoCu0·6NiSi0.2Tix (x=0.5) high entropy alloys by regulating the proportion of Ti and improving the cooling rate, Vacuum, 155 (2018) 270–279, doi:10.1016/j.vacuum.2018.06.020
18 N. D. Stepanov, N. Y. Yurchenko, D. V. Skibin, M. A. Tikhonovsky, G. A. Salishchev, Structure and mechanical properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys, Journal of Alloys and Compounds, 652 (2015) 266–280, doi:10.1016/j.jallcom. 2015.08.224
19 C. M. Lin, C. C. Juan, C. H. Chang, C. W. Tsai, J. W. Yeh, Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys, Journal of Alloys and Compounds, 624 (2015) 100–107, doi:10.1016/j.jallcom.2014.11.064
20 N. N. Guo, L. Wang, L. S. Luo, X. Z. Li, Y. Q. Su, J. J. Guo, H. Z. Fu, Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy, Materials & Design, 81 (2015) 87–94, doi:10.1016/j.matdes.2015.05.019
21 A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Materialia, 48 (2000) 279–306, doi:10.1016/ S1359-¬6454(99)00300-6
22 O. N. Senkov, C. F. Woodward, Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy, Materials Science and Engineering: A, 529 (2011) 311–320, doi:10.1016/j.msea.2011.09.033