ISOTHERMAL CURING KINETICS OF POLYMETHACRYLIMIDE/NANO-SiO2 COMPOSITES BASED ON A DYNAMIC THERMOMECHANICAL ANALYSIS

  • Jing Zhang School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
  • Yi-min Wu School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
  • Xu Ma School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
  • Bao-Yu Huang Changzhou Sveck Photovoltaic New Material Co., Ltd, Changzhou 213200, Jiangsu, China
  • Song Lv Changzhou Sveck Photovoltaic New Material Co., Ltd, Changzhou 213200, Jiangsu, China
  • Jia-xing Jiang Wuxi Jiefu Electroacoustic Co., Ltd, Wuxi 214192, Jiangsu, China
  • Ji-Jun Tang School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
Keywords: polymethacrylimide, SiO2, nanocomposites, isothermal curing, dynamic thermomechanical analysis (DMA)

Abstract

The isothermal curing kinetics of polymethacrylimide/nano-SiO2 composites were investigated using a dynamic thermomechanical analysis. The relative conversion was defined with the storage modulus. The Avrami model-fitting method, Friedman method and integral method were applied to analyze the curing kinetics. The storage modulus and loss modulus increased appreciably, spanning three orders of magnitude throughout the curing. The frequency correlation of the relative conversion was noticeable at 180 °C because the glass transition took place when the curing degree was not high enough. The Avrami model-fitting analysis gave good fits for the experimental data. The activation energy calculated with the Avrami equation changed from 65.46 kJ/mol to 25.28 kJ/mol at 180–190 °C, while at 190–200 °C, the activation energy changed from 107.14 kJ/mol to 63.82 kJ/mol. The model-free analysis revealed the dependence of the activation energy on the relative conversion. The activation energy increased from 104.3 kJ/mol to 130.6 kJ/mol with the use of the Friedman method when the relative conversion ranged between 0.4–0.8. Similarly, the activation energy calculated with the integral method increased from 71.5 kJ/mol to 103.4 kJ/mol. When the relative conversion exceeded 0.8, the activation energy decreased gradually. The mobility of the reactive groups was hindered and the crosslinking density of the composite was much higher. The curing kinetics became diffusion controlled. The activation energy of the PMI/SiO2 composite was greater than that of PMI, which could be attributed to the hindrance effect caused by nano-SiO2.

References

1 H. F. Seibert, PMI foam cores find further applications, Reinforced Plastics, 44 (2000) 1, 36–38, doi:10.1016/S0034-3617(00)86485-1
2 H. F. Seibert, Applications for PMI foams in aerospace sandwich structures, Reinforced Plastics, 50 (2006) 1, 44–48, doi:10.1016/ S0034-¬3617(06)70873-6
3 Y. Chen, Preparation and structural characterization of poly¬metha¬crylimide foams, New Chemical Materials, 35 (2007) 2, 32–34, doi:10.2514/1.26230
4 J. Qu, D. Ju, Research on the dynamic mechanical properties of polymethacrylimide foam sandwich structure, Composite Structures, 204 (2018) 22–30, doi:10.1016/j.compstruct.2018.07.078
5 T. Chen, G. Zhang, X. Zhao, Structure and properties of AN/MAA/AM copolymer foam plastics, Journal of Polymer Research, 17 (2009) 2, 171–181, doi:10.1007/s10965-009-9303-x
6 P. V. Kornienko, Y. P. Gorelov, K. V. Shirshin, Preparation of foamed polymethacrylimide structural materials from cross-linked copolymers of acrylonitrile and methacyrlic acid, Russian Journal of Applied Chemistry, 85 (2012) 11, 1748–1752, doi:10.1134/ s1070427212110195
7 T. Liu, G. Zhang, Mechanical properties of methacylic acid/acrylo¬nitrile copolymer foam, Polymer Engineering and Science, 47 (2007) 3, 314–322, doi:10.1002/pen.20710
8 H. Y. Tang, X. B. Rao, Effects of multiple crosslinking agents on structure and properties of polymethacrylimide (PMI) foams, Materials Research Innovations, 18 (2014) sup2, 473–477, doi:10.1179/ 1432891714z.000000000447
9 T. M. Liu, Y. S. Zheng, Application of Photo Initiation Copoly¬merization during the Preparation of Polymethacrylimide Copolymer Foam, Journal of Applied Polymer Science, 112 (2010) 5, 3041–3047, doi:10.1002/app.29896
10 M. John, T. Skala, Dimensional Changes in CFRP/PMI Foam Core Sandwich Structures, Applied Composite Materials, 20 (2013) 4, 601–614, doi:10.1007/s10443-012-9288-1
11 L. D. Mcgarva, B. T. Astrom, Experimental investigation of compression moulding of glass/PA12-PMI foam core sandwich components, Composites Part A: Applied Science and Manufacturing, 30 (1999) 10, 1171–1185, doi:10.1016/S1359-835X(99)00028-7
12 F. Yang, Q. Y. Lin, J. J. Jiang, Experimental study on fatigue failure and damage of sandwich structure with PMI foam core, Fatigue & Fracture of Engineering Materials & Structures, 38 (2015) 4, 456–465, doi:10.1111/ffe.12246
13 M. Rinker, M. John, Face sheet debonding in CFRP/PMI sandwich structures under quasi-static and fatigue loading considering residual thermal stress, Engineering Fracture Mechanics, 78 (2011) 17, 2835–2847, doi:10.1016/j.engfracmech.2011.07.007
14 I. Choi, J. G. Kim, Radar absorbing sandwich construction composed of CNT, PMI foam and carbon/epoxy composite, Composite Structures, 94 (2012) 9, 3002–3008, doi:10.1016/j.compstruct.2012.04. 009
15 J. T. Siivola, S. Minakuchi, N. Takeda, Effect of temperature and humidity conditions on polymethacrylimide (PMI) foam core material and indentation response of its sandwich structures, Journal of Sandwich Structures and Materials, 17 (2015) 4, 335–358, doi:10.1177/ 1099636215570831
16 Z. Zhang, M. Xu, B. Li, Research on rapid preparation and performance of polymethacrylimide foams, Journal of Applied Polymer Science, 134 (2017) 24, doi:10.1002/app.44959
17 Y. Chen, The polymethacrylimide foam/inorganic nanocomposite and its preparation method, Green Chemistry, 22 (2008) 17, 5722–5729
18 L. Yan, W. Jiang, Enhancement by Metallic Tube Filling of the Mechanical Properties of Electromagnetic Wave Absorbent Polymetha¬crylimide Foam, Polymers, 11 (2019) 2, 372, doi:10.3390/ polym11020372
19 S. Ghiyasi, M. G. Sari, Hyperbranched poly(ethyleneimine) physically attached to silica nanoparticles to facilitate curing of epoxy nanocomposite coatings, Progress in Organic Coatings, 120 (2018) 1, 100–109, doi:10.1016/j.porgcoat.2018.03.019
20 Y. Nakamura, M. Yamaguchi, Effects of particle size on mechanical and impact properties of epoxy resin filled with spherical silica, Journal of Applied Polymer Science, 45 (1992) 7, 1281–1289, doi:10.1002/app.1992.070450716
21 M. Jouyandeh, O. M. Jazani, High-performance epoxy-based adhesives reinforced with alumina and silica for carbon fiber composite/steel bonded joints, Journal of Reinforced Plastics and Composites, 35 (2016) 23, 1685–1695, doi:10.1177/0731684416665248
22 Z. Zhang, M. Xu, B. Li, Preparation and characterization of polymethacrylimide/silicate foam, Polymers for Advanced Technologies, 29 (2018) 12, 2982–2991, doi:10.1002/pat.4418
23 F. Tikhani, M. Jouyandeh, Cure Index demonstrates curing of epoxy composites containing silica nanoparticles of variable morphology and porosity, Progress in Organic Coatings, 135 (2019) 176–184, doi:10.1016/j.porgcoat.2019.05.017
24 M. Jouyandeh, O. M. Jazani, Surface engineering of nanoparticles with macromolecules for epoxy curing: Development of super-reactive nitrogen-rich nanosilica through surface chemistry manipulation, Applied Surface Science, 447 (2018) 152–164, doi:10.1016/ j.apsusc.2018.03.197
25 G. Kortaberria, L. Solar, Curing of an epoxy resin modified with nanoclay monitored by dielectric spectroscopy and rheological measurements, Journal of Applied Polymer Science, 102 (2006) 6, 5927–5933, doi:10.1002/app.25108
26 B. Lucio, J. L. de la Fuente, Non-isothermal DSC and rheological curing of ferrocene-functionalized, hydroxyl-terminated poly¬butadiene polyurethane, Reactive & Functional Polymers, 107 (2016) 60–68, doi:10.1016/j.reactfunctpolym.2016.08.002
27 M. R. Saeb, H. Rastin, Cure kinetics of epoxy/MWCNTs nanocom¬posites: Nonisothermal calorimetric and rheokinetic techniques, Journal of Applied Polymer Science, 134 (2017) 35, doi:10.1002/ app.45221
28 K. P. Menard, N. R. Menard, Dynamic Mechanical Analysis in the Analysis of Polymers and Rubbers, ACS Applied Materials & Interfaces, 12 (2015) 33, 37607–37618, doi:10.1002/0471440264. pst102.pub2
29 Y. Yuan, C. Dazhu, Cure behavior of epoxy resin/CdS/2,4-EMI nanocomposites investigated by dynamic torsional vibration method (DTVM), Polymer Bulletin, 57 (2006) 2, 219–230, doi:10.1007/ s00289-006-0550-2
30 J. Zhang, R. Ye, A Study of Isothermal Curing of PMI Using DMA, Advances in Materials Science and Engineering, 2015 (2015) 1–12, doi:10.1155/2015/695286
31 S. Dalton, F. Heatley, P. M. Budd, Thermal stabilization of polyacrylonitrile fibres, Polymer, 40 (1999) 20, 5531–5543, doi:10.1016/S0032-3861(98)00778-2
32 L. Nunez, F. Fraga, Effects of diffusion on the kinetic study of an epoxy system diglycidyl ether of bisphenol A/1,2-diamine cyclohexane/calcium carbonate filler, Journal of Applied Polymer Science, 77 (2000) 10, 2285–2295, doi:10.1002/1097-4628(20000906)77:10 <2285::AID-APP22>3.0.CO;2-W
33 S. Montserrat, C. Flaque, Effect of the crosslinking degree on curing kinetics of an epoxy–anhydride system, Industrial Crops and Products, 117 (1995) 169–178, doi:10.1002/app.1995.070561104
34 S. Khostavan, A. Omrani, A. A. Rostami, Influence of multiwalled carbon nanotubes on reaction kinetics of epoxy cured with 1,4-bis (3-aminopropoxy) butane, Monatshefte für Chemie – Chemical Monthly, 144 (2013) 2, 147–153, doi:10.1007/s00706-012-0774-9
35 Y. Li, K. Luo, Performance improvement of a p-Cu2O nanocrystal photocathode with an ultra-thin silver protective layer, Chemical Communications, 55 (2019) 67, 9963–9966, doi:10.1039/ C9CC04994K
36 J. Zhang, C. Zhang, S. A. Madbouly, In situ polymerization of bio-based thermosetting polyurethane/graphene oxide nanocom¬posites, Journal of Applied Polymer Science, 132 (2015) 13, doi:10.1002/app.41751
37 H. S. Y. Hsich, Kinetic model of cure reaction and filler effect, Journal of Applied Polymer Science, 27 (1982) 9, 3265–3277, doi:10.1002/app.1982.070270907
38 M. G. Lu, M. J. Shim, S. W. Kim, Dynamic DSC Characterization of Epoxy Resin by Means of the Avrami Equation, Journal of Thermal Analysis and Calorimetry, 58 (1999) 3, 701–709, doi:10.1023/ A:1010177116739
39 J. J. Jonas, X. Quelennec, The Avrami kinetics of dynamic recrystallization, Acta Materialia, 57 (2009) 9, 2748–2756, doi:10.1016/j.actamat.2009.02.033
40 H. Rastin, M. R. Saeb, Transparent nanocomposite coatings based on epoxy and layered double hydroxide: nonisothermal cure kinetics and viscoelastic behavior assessments, Green Chemistry, 21 (3), 526–537, doi:10.1016/j.porgcoat.2017.09.003
41 S. Sahoo, H. Kalita, Meticulous study on curing kinetics of green polyurethane-clay nanocomposite adhesive derived from plant oil: Evaluation of decomposition activation energy using TGA analysis, Journal of Macromolecular Science, Part A, 54 (2017) 11, 819–826, doi:10.1080/10601325.2017.1336727
42 A. L. Daniel-da-Silva, J. C. M. Bordado, J. M. Martín-Martínez, Moisture curing kinetics of isocyanate ended urethane quasi-¬prepolymers monitored by IR spectroscopy and DSC, Journal of Applied Polymer Science, 107 (2010) 2, 700–709, doi:10.1002/ app.26453
43 S. Vyazovkin, Evaluation of activation energy of thermally stimulated solid-state reactions under arbitrary variation of temperature, Journal of Computational Chemistry, 18 (1997) 3, 393–402, doi:10.1002/(sici)1096-987x(199702)18:3<393::aid-jcc9>3.0.co;2-p
44 S. Vyazovkin, C. A. Wight, Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data, Thermo¬chimica Acta, 340–341 (1999) 1, 53–68, doi:S0040-6031(99) 00253-1
45 T. Ozawa, Kinetic analysis of derivative curves in thermal analysis, Journal of Thermal Analysis and Calorimetry, 2 (1970) 3, 301–324, doi:10.1007/bf01911411
46 S. Vyazovkin, N. Sbirrazzuoli, Kinetic analysis of isothermal cures performed below the limiting glass transition temperature, Macro¬molecular Rapid Communications, 21 (2000) 2, 85–90, doi:10.1002/ (SICI)1521-3927(20000201)21:2<85::AID-MARC85>3.0.CO;2-G
Published
2021-04-15
How to Cite
1.
Zhang J, WuY- min, Ma X, HuangB-Y, Lv S, JiangJ- xing, TangJ-J. ISOTHERMAL CURING KINETICS OF POLYMETHACRYLIMIDE/NANO-SiO2 COMPOSITES BASED ON A DYNAMIC THERMOMECHANICAL ANALYSIS. MatTech [Internet]. 2021Apr.15 [cited 2025May16];55(2):293-04. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/132