EXPLORING HAZELNUT SHELL-DERIVED CARBON AS AN ECO-FRIENDLY ADDITIVE IN BICYCLE TIRE MANUFACTURING
Abstract
Recently, the tire industry has focused on eco-friendly practices, particularly on integrating waste materials into rubber formulations. Natural alternatives to carbon have offered a promising way to lower the carbon footprint by promoting recycling. This study explored the incorporation of carbon derived from hazelnut shells (HSC), an agricultural byproduct, as an additive in bicycle tire manufacturing. Bicycle tire formulations were prepared by maintaining a constant total carbon filler content of 28 parts per hundred rubber (phr). Initially, 28 phr of commercial carbon black and 0 phr of HSC were used. In subsequent formulations, the carbon black content was gradually reduced to (21, 14, 7, and finally 0) phr, while the HSC content was correspondingly increased to (7, 14, 21, and 28) phr to replace the reduced commercial carbon black. The produced tires were analyzed using density measurements, Mooney viscosity (MV), Mooney scorch (MS), rheological evaluations, mechanical testing, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), plunger tests, and rolling resistance tests. The study demonstrates that, although increasing the amount of HSC in tire compositions reduces the mechanical performance, the required performance standards for bicycle tires are still met.
References
2. Z. Wang, K. Burra, T. Lei, A. Gupta, Co-pyrolysis of waste plastic and solid biomass for synergistic production of biofuels and chemicals - a review, Progress in Energy and Combustion Science, 84 (2021), 100899, doi:10.1016/j.pecs.2020.100899
3. S. Junga, D. Kwona, Y. Tsang, Y. Park, E. Kwon, CO2-cofeeding catalytic pyrolysis of macadamia nutshell, Journal of CO2 Utilization, 37 (2020), 97–105, doi:10.1016/j.jcou.2019.11.011
4. S. Doja, L. Pillari, L. Bichler, Processing and activation of tire-derived char: A review, Renewable and Sustainable Energy Reviews, 155 (2022), 111860, doi:10.1016/j.rser.2021.111860
5. I. Usman, M. Tijjani, Y. Ho, L. Baloo, M. Lam, W. Sujarwo, A comprehensive review on the advances of bioproducts from biomass towards meeting net zero carbon emissions, Bioresource Technology, 366 (2022), 128167, doi:10.1016/j.biortech.2022.128167
6. J. Balart, V. Fombuena, O. Fenollar, T. Boronat, L. Sanchez-Nacher, Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO), Composites Part B: Engineering, 86 (2016), 168-177, doi:10.1016/j.compositesb.2015.09.002
7. B. Aydinli, A. Caglar, The investigation of the effects of two different polymers and three catalysts on pyrolysis of hazelnut Shell, Fuel Processing Technology, 93 (2012), 1–7, doi:10.1016/j.fuproc.2011.09.011
8. B. Aydinli, A. Caglar, The comparison of hazelnut shell co-pyrolysis with polyethylene oxide and previous ultra-high molecular weight polyethylene, Journal of Analytical and Applied Pyrolysis, 87 (2010), 263–268, doi:10.1016/j.jaap.2009.10.008
9. G. G. Gozaydin, A. Yuksel, Valorization of hazelnut shell waste in hot compressed water, Fuel Processing Technology, 166 (2017), 96-106, doi:10.1016/j.fuproc.2017.06.020
10. A. Di Michele, C. Pagano, A. Allegrini, et al., Hazelnut Shells as Source of Active Ingredients: Extracts Preparation and Characterization, Molecules, 26 (2021), 6607, doi:10.3390/molecules26216607
11. H. Acma, The role of particle size in the non-isothermal pyrolysis of hazelnut Shell, Journal of Analytical and Applied Pyrolysis, 75 (2006), 211–216, doi:10.1016/j.jaap.2005.05.002
12. M. Livaniivani, M. Ghorbani, H. Mehdipour, Preparation of an activated carbon from HSC and its hybrids with magnetic NiFe2O4 nanoparticles, New Carbon Materials, 33 (2018), 578-586, doi:10.1016/S1872-5805(18)60366-9
13. E. Amini, M. Safdari, J. DeYoung, D. Weise, Characterization of pyrolysis products from slow pyrolysis of live and dead vegetation native to the southern United States, Fuel, 235 (2019), 1475–1491, doi:10.1016/j.fuel.2018.08.024
14. A. Bardha, S. Prasher, J. Villarta, et al., Nut shell and grain husk waste biochar as carbon black replacements in styrene-butadiene rubber composites and improvements through steam activation, Industrial Crops & Products, 203 (2023), 117180, doi:10.1016/j.indcrop.2023.117180
15. C. Dominic, A. Balan, K. Neenu, et al., Sustainable Kerala rice husk ash for formulation of basic tyre tread: Taking first step, Sustainable Materials and Technologies, 32 (2022), e00427, doi:10.1016/j.susmat.2022.e00427
16. Ö. Bağ, Biyokütleden Karbon Malzemelerin Üretimi ve Karakterizasyonu, Master’s Thesis, Karabük University, Institute of Science, Department of Chemical Engineering, Karabük, Turkey (2017)
17. G. Altundal, H. Gerengi, E. Çetin, U. Kapcak, K. Kaymaz, Performans Bisiklet Lastiği Sırt Karışımının Geliştirilmesi ve Özelliklerinin İncelenmesi, Duzce University Journal of Science and Technology, 8 (2020), 1661-1675, doi:10.29130/dubited.671526
18. U. Kapcak, E. Çetin, L. Kahraman, H. Gerengi, Bisiklet lastiklerinde sırt deseninin performansa etkisi, Zeugma 2. Uluslararası Multidisipliner Çalışmalar Kongresi, 2 (2019), 650-666
19. A. Mavukwana, N. Stacey, J. Fox, B. Sempuga, Thermodynamic comparison of pyrolysis and gasification of waste tyres, Journal of Environmental Chemical Engineering, 9 (2021), 105163, doi:10.1016/j.jece.2021.105163
20. A. Kaliyathan, A. Rane, M. Huskic, et al., Carbon black distribution in natural rubber/butadiene rubber blend composites: Distribution driven by morphology, Composites Science and Technology, 200 (2020), 108484, doi:10.1016/j.compscitech.2020.108484
21. N. Seshaiah, N. Kumar, M. Afrid, et al., Investigation of cure behaviour and tensile properties of NR/SBR composite filled with carbon black and silica, Materials Today: Proceedings, 59 (2022), 387–391, doi:10.1016/j.matpr.2021.11.494
22. C. Hayichelaeh, K. Boonkerd, Enhancement of the properties of carbon-black-filled natural rubber compounds containing soybean oil cured with peroxide through the addition of coagents, Industrial Crops & Products, 187 (2022), 115306, doi:10.1016/j.indcrop.2022.115306
23. E. Çetin, H. Gerengi, G. Altundal, Development of Puncture Resistant High Performance Bicycle Tire, International Academic Research Congress, Bolu (2019), 430-440
24. G. Altundal, H. Gerengi, E. Çetin, U. Kapcak, K. Kaymaz, Performans Bisiklet Lastiği Sırt Karışımının Geliştirilmesi ve Özelliklerinin İncelenmesi, Duzce University Journal of Science and Technology, 8 (2020), 1661-1675, doi:10.29130/dubited.671526
25. G. Altundal, İ. Uygur, T. Görmüşer, H. Gerengi, K. Metin, E. Çetin, Lastik Karışımlarında Klasik ZnO Yerine Aktif ZnO Kullanımının Bazı Fizikomekanik Özelliklere Etkilerinin Araştırılması, Duzce University Journal of Science and Technology, 10 (2022), 107-113, doi:10.29130/dubited.731842
26. S. Erkek, Karbon Siyahı/Yağ ve Karbon Siyahı/Dolgu Maddesi Oranının Farklı Vulkanizasyon Sistemlerinde EPDM, NBR ve SBR Elastomerlerinin Fiziko-Mekaniksel Özellikleri Üzerine Etkisi, Master’s Thesis, Çukurova University, Institute of Science, Department of Chemical Engineering, Adana, Turkey (2007)
27. Rubber Water, Testing Instruments (2023). Available online: https://www.tainstruments.com/products/rubber-testing/
28. V. Vahapoğlu, Kauçuk Türü Malzemeler: Sınıflandırma, Mehmet Akif Ersoy University Journal of Institute of Science and Technology, 4(1) (2013), 25-34
29. DÜBİT (Düzce Üniversitesi Bilimsel ve Teknolojik Araştırmalar Uygulama ve Araştırma Merkezi), (2023). Available online: https://duzce.edu.tr/akademik/merkez/dubit.
30. SAMPA A.Ş. R&D Centre, CAMP, (2023). Available online: https://www.sampa.com/tr/yetkinliklerimiz/camp-ar-ge.
31. S. P. Nalavade, B. J. Sagare, D. V. Moghe, N. V. Kulkarni, S. M. Bodhe, P. Purohit, R. Gurav, Ungraded tyre performance analysis for Indian road conditions, Materials Today: Proceedings, 90(1) (2023), 61-66, doi:10.1016/j.matpr.2023.04.035.
32. ANLAS Anadolu Lastik A.Ş., Anlas R&D Center Lab., (2023). Available online: https://anlas.com/en/.
33. D. Klat, H. A. Karimi-Varzaneh, J. Lacayo-Pineda, Phase Morphology of NR/SBR Blends: Effect of Curing Temperature and Curing Time, Polymers, 10(5) (2018), 510, doi:10.3390/polym10050510.
34. M. Dominic, R. Joseph, P. Begum, B. Parambath Kanoth, Green tyre technology: Effect of rice husk derived nanocellulose (RHNC) in replacing carbon black (N) in natural rubber (NR) compounding, Carbohydrate Polymers, 230 (2020), 115620, doi:10.1016/j.carbpol.2019.115620.