INFLUENCE OF A LOW-TEMPERATURE PLASTIC-DEFORMATION PROCESS ON THE MICROSTRUCTURE OF AN Al-Si-Mg ALUMINUM ALLOY

  • Ceren Gode School of Denizli Vocational Technology, Program of Machine, Pamukkale University, Denizli, Turkey
Keywords: Al-Si-Mg aluminum alloy, solution-treatment, cryo-rolling, microstructure, Williamson-Hall relationship, X-ray diffraction

Abstract

This work was planned to modify the microstructure of a solution-treated, cast Al-Si-Mg aluminum alloy by a plastic deformation method at a cryogenic temperature. It was found that cryo-rolling is an efficient low-temperature, plastic-deformation method that causes the transformation of a dendritic microstructure to an ultrafine-grained counterpart with a high dislocation density and the redistribution of hard silicon particles in the cast aluminum alloy. The results show cryo-rolling strains lead to an increment of the dislocation density because of the annihilation of the dislocations’ dynamic recovery. The microstructural refinement imposed by cryo-rolling seems to lead to a notable strength enhancement of the material because of the coupled impact of dislocation-strengthening and grain-boundary-strengthening mechanisms.

References

1 M. Kamp, J. Bartsch, R. Keding, M. Jahn, R. Müller, M. Glatthaar, S.W. Glunz, I. Krossing, Plating processes on aluminum and application to novel solar cell concepts, Energy Procedia. 55 (2014) 679–687, doi:10.1016/j.egypro.2014.08.044
2 E. A. Starke, J. T. Staleyt, Application of modern aluminum alloy to aircraft, Prog. Aerosp. Sci. 32 (1996) 131–172, doi:10.1016/0376-¬0421(95)00004-6
3 J. A. Taylor, D. H. Stjohn, M. A. Easton, Case studies in aluminium casting alloys, Woodhead Publishing Limited, 2010, doi:10.1533/ 9780857090256.1.185
4 P. Nageswara rao, R. Jayaganthan, Effects of warm rolling and ageing after cryogenic rolling on mechanical properties and micro¬structure of Al 6061 alloy, Mater. Des. 39 (2012) 226–233, doi:10.1016/j.matdes.2012.02.010
5 F. Rajabi, A. Zarei-Hanzaki, M. Eskandari, S. Khoddam, The effects of rolling parameters on the mechanical behavior of 6061 aluminum alloy, Mater. Sci. Eng. A., 578 (2013) 90–95, doi:10.1016/j.msea. 2013.04.023
6 S. Das, N. S. Lim, H. W. Kim, C. G. Park, Effect of rolling speed on microstructure and age-hardening behaviour of Al-Mg-Si alloy produced by twin roll casting process, Mater. Des., 32 (2011) 4603–4607, doi:10.1016/j.matdes.2011.03.057
7 N. Saleema, D. K. Sarkar, R. W. Paynter, D. Gallant, M. Eskan¬darian, A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications, Appl. Surf. Sci., 261 (2012) 742–748, doi:10.1016/j.apsusc.2012. 08.091
8 R. Z. Valiev, T. G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci., 51 (2006) 881–981, doi:10.1016/j.pmatsci.2006.02.003
9 M. Ebrahimi, S. Attarilar, C. Gode, F. Djavanroodi, Damage prediction of 7025 aluminum alloy during equal-channel angular pressing, Int. J. Miner. Metall. Mater., 21 (2014) 990–998, doi:10.1007/ s12613-¬014-1000-z
10 M. Ebrahimi, H. Gholipour, F. Djavanroodi, A study on the capability of equal channel forward extrusion process, Mater. Sci. Eng. A., 650 (2015) 1–7, doi:10.1016/j.msea.2015.10.014
11 C. Xu, S. Schroeder, P. B. Berbon, T. G. Langdon, Principles of ECAP-Conform as a continuous process for achieving grain refinement: Application to an aluminum alloy, Acta Mater., 58 (2010) 1379–1386, doi:10.1016/j.actamat.2009.10.044
12 N. N. Krishna, K. Sivaprasad, P. Susila, Strengthening contributions in ultra-high strength cryorolled Al-4%Cu-3%TiB2 in situ composite, Trans. Nonferrous Met. Soc. China (English Ed.), 24 (2014) 641–647, doi:10.1016/S1003-6326(14)63106-X
13 G. Purcek, H. Yanar, O. Saray, I. Karaman, H. J. Maier, Effect of precipitation on mechanical and wear properties of ultrafine-grained Cu–Cr–Zr alloy, Wear., 311 (2014) 149–158, doi:10.1016/j.wear. 2014.01.007
14 S. K. Panigrahi, R. Jayaganthan, A study on the mechanical properties of cryorolled Al-Mg-Si alloy, Mater. Sci. Eng. A., 480 (2008) 299–305, doi:10.1016/j.msea.2007.07.024
15 W. Yinmin, C. Mingwei, Z. Fenghua, M. En, High tensile ductility in a nanostructured metal, Nature, 419 (2002) 912, doi:10.1038/ nature01133
16 M. V. Markushev, E. V. Avtokratova, I. Y. Kazakulov, S. V. Krymsky, M. Y. Mochalova, M. Y. Murashkin, O. S. Sitdikov, Microstructure and properties of an aluminum D16 alloy subjected to cryogenic rolling, Russ. Metall., 2011 (2011) 364–369, doi:10.1134/ S0036029511040136
17 N. M. Anas, B. K. Dhindaw, H. Zuhailawati, T. K. Abdullah, A. S. Anasyida, Effect of Initial Microstructure on Properties of Cryorolled Al 5052 Alloy Subjected to Different Annealing Treatment Temperatures, J. Mater. Eng. Perform., 27 (2018) 6206–6217, doi:10.1007/s11665-018-3645-7
18 S. V. Zherebtsov, G. S. Dyakonov, A. A. Salem, V. I. Sokolenko, G. A. Salishchev, S. L. Semiatin, Formation of nanostructures in commercial-purity titanium via cryorolling, Acta Mater., 61 (2013) 1167–1178, doi:10.1016/j.actamat.2012.10.026
19 T. Konkova, S. Mironov, A. Korznikov, S. L. Semiatin, Micro¬structural response of pure copper to cryogenic rolling, Acta Mater., 58 (2010) 5262–5273, doi:10.1016/j.actamat.2010.05.056
20 C. M. Cepeda-Jiménez, J. M. García-Infanta, A. P. Zhilyaev, O. A. Ruano, F. Carreño, Influence of the thermal treatment on the deformation-induced precipitation of a hypoeutectic Al-7 wt% Si casting alloy deformed by high-pressure torsion, J. Alloys Compd., 509 (2011) 636–643, doi:10.1016/j.jallcom.2010.09.122
21 Z. Chen, Y. Lei, H. Zhang, Structure and properties of nanostructured A357 alloy produced by melt spinning compared with direct chill ingot, J. Alloys Compd., 509 (2011) 7473–7477, doi:10.1016/j.jallcom. 2011.04.082
22 G. Sha, H. Möller, W. E. Stumpf, J. H. Xia, G. Govender, S. P. Ringer, Solute nanostructures and their strengthening effects in Al-7Si-0.6Mg alloy F357, Acta Mater., 60 (2012) 692–701, doi:10.1016/j.actamat.2011.10.029
23 E. Ogris, A. Wahlen, H. Lüchinger, P. J. Uggowitzer, On the silicon spheroidization in Al-Si alloys, J. Light Met., 2 (2002) 263–269, doi:10.1016/S1471-5317(03)00010-5
24 E. Sjölander, S. Seifeddine, The heat treatment of Al-Si-Cu-Mg casting alloys, J. Mater. Process. Technol., 210 (2010) 1249–1259, doi:10.1016/j.jmatprotec.2010.03.020
25 M. Zhu, Z. Jian, G. Yang, Y. Zhou, Effects of T6 heat treatment on the microstructure, tensile properties, and fracture behavior of the modified A356 alloys, Mater. Des., 36 (2012) 243–249, doi:10.1016/j.matdes.2011.11.018
26 M. Moradi, M. Nili-Ahmadabadi, B. Poorganji, B. Heidarian, M. H. Parsa, T. Furuhara, Recrystallization behavior of ECAPed A356 alloy at semi-solid reheating temperature, Mater. Sci. Eng. A., 527 (2010) 4113–4121, doi:10.1016/j.msea.2010.03.021
27 I. Feijoo, M. Cabeza, P. Merino, G. Pena, M. C. Pérez, S. Cruz, P. Rey, Estimation of crystallite size and lattice strain in nano-sized TiC particle-reinforced 6005A aluminium alloy from X-ray diffraction line broadening, Powder Technol., 343 (2019) 19–28, doi:10.1016/ j.powtec.2018.11.010
28 A. Sajadi, M. Ebrahimi, F. Djavanroodi, Experimental and numerical investigation of Al properties fabricated by CGP process, Mater. Sci. Eng. A., 552 (2012) 97–103, doi:10.1016/j.msea.2012.04.121
29 K. Ma, H. Wen, T. Hu, T. D. Topping, D. Isheim, D. N. Seidman, E. J. Lavernia, J. M. Schoenung, Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy, Acta Mater., 62 (2014) 141–155, doi:10.1016/j.actamat. 2013.09.042
30 H. Wen, T. D. Topping, D. Isheim, D. N. Seidman, E. J. Lavernia, Strengthening mechanisms in a high-strength bulk nanostructured Cu-Zn-Al alloy processed via cryomilling and spark plasma sintering, Acta Mater., 61 (2013) 2769–2782, doi:10.1016/j.actamat. 2012.09.036
31 V. Yamakov, D. Wolf, S. R. Phillpot, H. Gleiter, Grain-boundary diffusion creep in nanocrystalline palladium by molecular-dynamics simulation, Acta Mater., 50 (2002) 61–73, doi:10.1016/S1359-6454 (01)00329-9
32 Z. T. Trautt, Y. Mishin, Grain boundary migration and grain rotation studied by molecular dynamics, Acta Mater., 60 (2012) 2407–2424, doi:10.1016/j.actamat.2012.01.008
Published
2021-04-15
How to Cite
1.
Gode C. INFLUENCE OF A LOW-TEMPERATURE PLASTIC-DEFORMATION PROCESS ON THE MICROSTRUCTURE OF AN Al-Si-Mg ALUMINUM ALLOY. MatTech [Internet]. 2021Apr.15 [cited 2024Nov.9];55(2):283-91. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/130