A NOVEL 3d TRANSITION-METAL ALCOCRCUTI HIGH-ENTROPY ALLOY
Abstract
The phase component, microstructure and compressive properties of a novel 3d transition metal high entropy alloy, AlCoCrCuTi, in as-cast and annealed conditions were investigated. The phases of the as-cast AlCoCrCuTi alloy are composed of primary phase AlCo2Ti (L21), eutectic structure {AlCo2Ti (L21)+ Al3Cr7 (BCC)} and interdendritic phase AlCu2Ti (L21). Through annealing, a rosette feature of the as-cast AlCo2Ti + Al3Cr7 eutectic structure is deteriorated due to the lath-like Al3Cr7 changed to finely-divided one. In mechanics performance, the as-cast alloy exhibits a balanced synergy in hardness (593±37 HV) and ultimate strength (745 MPa), while the hardness of the annealed alloy slightly increases to 647±23 HV at the expense of the ultimate strength. Moreover, the alloy either in as-cast or annealed conditions unfortunately display a typically brittle character. The deficiency of elongation might stem from the diversified brittle and hard phases incorporated, such as AlCo2Ti + Al3Cr7.
References
2 N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev, M.A. Tikhonovsky, E.E. Oleynik, A.S. Tortika, O.N. Senkov, Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys, J. Alloys Compd., 628 (2015) 170-185, doi:10.1016/j.jallcom.2014.12.157.
3 Y. Dong, Y. Lu, J. Kong, J. Zhang, T. Li, Microstructure and mechanical properties of multi-component AlCrFeNiMox high-entropy alloys, J. Alloys Compd., 573 (2013) 96-101, doi:10.1016/j.jallcom.2013.03.253.
4 R.R. Eleti, T. Bhattacharjee, A. Shibata, N. Tsuji, Unique deformation behavior and microstructure evolution in high temperature processing of HfNbTaTiZr refractory high entropy alloy, Acta Mater., 171 (2019) 132-145, doi:10.1016/j.actamat.2019.04.018.
5 J. Li, Q. Fang, B. Liu, Y. Liu, Transformation induced softening and plasticity in high entropy alloys, Acta Mater., 147 (2018) 35-41, doi:10.1016/j.actamat.2018.01.002.
6 I. Basu, V. Ocelik, J.T.M. De Hosson, Size dependent plasticity and damage response in multiphase body centered cubic high entropy alloys, Acta Mater., 150 (2018) 104-116, doi:10.1016/j.actamat.2018.03.015.
7 K.F. Quiambao, S.J. McDonnell, D.K. Schreiber, A.Y. Gerard, K.M. Freedy, P. Lu, J.E. Saal, G.S. Frankel, J.R. Scully, Passivation of a corrosion resistant high entropy alloy in non-oxidizing sulfate solutions, Acta Mater., 164 (2019) 362-376, doi:10.1016/j.actamat.2018.10.026.
8 D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater., 122 (2017) 448-511, doi:10.1016/j.actamat.2016.08.081.
9 B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng., A, 375-377 (2004) 213-218, doi:10.1016/j.msea.2003.10.257.
10 J.W. Yeh, S.K. Chen, J.Y. Gan, SK Chen,T.T. Shun, C.H. Tsau, S.Y. Chou, Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements, Metall. Mater. Trans. A, 35A (2004) 2533-2536, doi:10.1007/s11661-006-0234-4.
11 J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater., 6 (2004) 299-303, doi:10.1002/adem.200300567.
12 Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmene, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog. Mater Sci., 61 (2014) 1-93, doi:10.1016/j.pmatsci.2013.10.001.
13 C.J. Tong, M.R. Chen, J.W. Yeh, S.J. Lin, S.K. Chen, T.T. Shun, S.Y. Chang, Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metall. Mater. Trans. A, 36A (2005) 1263-1271, doi:10.1007/s11661-005-0218-9.
14 M.H. Tsai, J.W. Yeh, High-entropy alloys: a critical review, Mater. Res. Lett., 2 (2014) 3, 107-123, doi:10.1080/21663831.2014.912690.
15 J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, S. J. Lin, Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements, Mater. Chem. Phys., 103 (2007) 1, 41-46, doi:10.1016/j.matchemphys.2007.01.003.
16 S. Praveen, B.S. Murty, R.S. Kottada, Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys, Mater. Sci. Eng., A, 534 (2012) 83-89, doi:10.1016/j.msea.2011.11.044.
17 J.Y. He, W.H. Liu, H. Wang, Y. Wu, Z.P. Lu, Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system, Acta Mater., 62 (2014) 105-113, doi:10.1016/j.actamat.2013.09.037.
18 X.F. Wang, Y. Zhang, Y. Qiao, G.L. Chen, Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys, Intermetallics, 15 (2007) 3, 357-362, doi:10.1016/j.intermet.2006.08.005.
19 Y.J. Zhou, Y. Zhang, Y.L. Wang, G.L. Chen, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties, Appl. Phys. Lett., 90 (2007) 18, 181904, doi:10.1063/1.2734517.
20 M.R. Chen, S.J. Lin, J.W. Yeh, S.K. Chen, C.P. Tu, Microstructure and properties of Al0.5CoCrCuFeNiTix (x=0-2.0) high-entropy alloys, Mater. Trans., 47 (2006) 5, 1395-1401, doi:10.2320/matertrans.47.1395.
21 Z. Hu, Y. Zhan, G. Zhang, J. She, C. Li, Effect of rare earth Y addition on the microstructure and mechanical properties of high entropy AlCoCrCuNiTi alloys, Mater. Des., 31 (2010) 3, 1599-1602, doi:10.1016/j.matdes.2009.09.016.
22 A. Li, D. Ma, Q. Zheng, Effect of Cr on Microstructure and Properties of a Series of AlTiCrxFeCoNiCu High-Entropy Alloys, J. Mater. Eng. Perform., 23 (2014) 4, 1197-1203, doi:10.1007/s11665-014-0871-5.