OPTIMIZING WELD QUALITY IN DISSIMILAR STAINLESS STEEL JOINTS FOR INDUSTRIAL APPLICATIONS

  • Selvamuthukumaran Dhanasekaran Department of Mechanical Engineering, Bannari Amman Institute of Technology, Sathyamangalam, Erode 638401, India
  • V. C. Uvaraja Department of Agricultural Engineering, Bannari Amman Institute of Technology, Sathyamangalam, Erode 638401, India
Keywords: dissimilar stainless steel, cold metal transfer (CMT) welding, Taguchi L9 optimization, TOPSIS, ultimate tensile strength (UTS), microhardness (HV0.5), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDXS)

Abstract

The research aims to develop quality joints using cold metal transfer (CMT) welding. We investigated stainless steel sheets such as Duplex 2205, SS 301 LN and ER 308L SS filler wire used for chemical and food processing equipment applications. The major focus was on optimizing the welding parameters for producing quality weld joints, thus ensuring the optimal ultimate tensile strength (UTS) and microhardness (HV0.5). The Taguchi L9 orthogonal array was used in this study to find the most significant parameters among welding speed (S), current (A) and contact-to-work distance (CTWD), and their optimum settings for producing high-quality welds. The multi-objective optimization TOPSIS method was employed to optimize the ultimate tensile strength (UTS) and microhardness (HV0.5). According to the TOPSIS performance index, the welding current was identified as the most influential factor, contributing 94.79 %, followed by welding speed and CTWD contributing 4.48 % and 0.15 %, respectively. The optimized welding parameters including a current of 95 A, welding speed (travel speed) of 4 mm/sec, and CTWD of 5 mm were identified as the best results. Confirmatory experiments were conducted to validate the optimized settings; they demonstrated good agreement with the predicted results. Finally, optical microscopy (OM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDXS) analyses of the optimal weld microstructure were presented.

References

1. J. Verma, R. V. Taiwade, "Effect of welding processes and conditions on the microstructure, mechanical properties and corrosion resistance of duplex stainless steel weldments—A review," J. Manuf. Process., vol. 25, pp. 134-152, 2017. ISSN 1526-6125. doi:10.1016/j.jmapro.2016.11.003.
2. X. Li, W. Liu, X. Guo, Z. Zhang, Z. Song, "Microstructure Evolution of Laser Welded 301LN and AISI 304 Austenitic Stainless Steel," Metall. Mater. Trans. A, vol. 54, no. 4, pp. 1186-1198, 2023. doi:10.1007/s11661-023-06973-6.
3. Articles: Kuwayama K: Water tank built to last 60 years, nickel development institute (1994) https://www.nickelinstitute.org/~/Media/Files/TechnicalLiterature/WaterTankBuilttoLast60Years_14030_.pdf, 10.
4. Y. Yang, B. Yan, J. Li, J. Wang, "The effect of large heat input on the microstructure and corrosion behaviour of simulated heat affected zone in 2205 duplex stainless steel," Corros. Sci., vol. 53, no. 11, pp. 3756-3763, 2011. ISSN 0010-938X. doi:10.1016/j.corsci.2011.07.022.
5. K. Furukawa, "New CMT arc welding process – welding of steel to aluminium dissimilar metals and welding of super-thin aluminium sheets," Weld. Int., vol. 20, no. 6, pp. 440-445, 2006. doi:10.1533/wint.2006.3598
6. S. Selvi, A. Vishvaksenan, E. Rajasekar, "Cold metal transfer (CMT) technology - An overview," Defence Technol., vol. 14, no. 1, pp. 28-44, 2018. ISSN 2214-9147. doi:10.1016/j.dt.2017.08.002.
7. J. G. Roy, N. Yuvaraj, Vipin, Effect of welding parameters on mechanical properties of cold metal transfer welded thin AISI 304 stainless-steel sheets, Trans. Indian Inst. Metals, 74 (2021) 9, 2397-2408, doi:10.1007/s12666-021-02326-2.
8. C.R. Das, A.K. Bhaduri, G. Srinivasan, V. Shankar, S. Mathew, Selection of filler wire for and effect of auto tempering on the mechanical properties of dissimilar metal joint between 403 and 304L(N) stainless steels, J. Mater. Process. Technol., 209 (2009) 3, 1428-1435, doi:10.1016/j.jmatprotec.2008.03.053.
9. A. B. Naik, A. Chennakesava Reddy, V. Venugopal Reddy, Effect of process parameters of tungsten inert gas welding on welding of duplex stainless steels, Int. J. Res. Appl. Sci. Eng. Technol., 6 (2018) 1, 2818-2827, doi:10.22214/ijraset.2018.1388.
10. G. Kaur, D. Singh, J.S. Grewal, Effect of filler wire composition on joining properties of GTAW stainless steel 202, Proc. of the Inter. Conf. on Research and Innovations in Mechanical Engineering, Khangura, S.S., Singh, P., Singh, H., Brar, G.S. (Eds.), Springer India, New Delhi, 2014, 191-200, doi:10.1007/978-81-322-1859-3_17.
11. B. Varbai, P. Bolyhos, D.M. Kemény, K. Májlinger, Microstructure and corrosion properties of austenitic and duplex stainless steel dissimilar joints, Period. Polytech. Mech. Eng., 66 (2022) 4, 344-349, doi:10.3311/PPme.21007.
12. G.S. Vinodkumar, V. Mayavan, G. Rathinasabapathi, A. G. David, Optimization of process parameters for a solid-state-welded AISI 430 steel joint with the GRG reinforced response surface methodology, Mater. Tehnol., 57 (2023) 5, 485–494, doi:10.17222/mit.2023.873.
13. Pratiwi, D.K.; Arifin, A.; Gunawan; Mardhi, A.; Afriansyah. Investigation of Welding Parameters of Dissimilar Weld of SS316 and ASTM A36 Joint Using a Grey-Based Taguchi Optimization Approach. J. Manuf. Mater. Process. 2023, 7, 39. https://doi.org/10.3390/jmmp7010039.
14. A.R. Kannan, N.S. Shanmugam, S.A. Vendan, Effect of cold metal transfer process parameters on microstructural evolution and mechanical properties of AISI 316L tailor welded blanks, Int. J. Adv. Manuf. Technol., 103 (2019), 4265–4282, doi:10.1007/s00170-019-03856-2.
15. P. Luchtenberg, P.T. de Campos, P. Soares, C.A.H. Laurindo, O. Maranho, R.D. Torres, Effect of welding energy on the corrosion and tribological properties of duplex stainless steel weld overlay deposited by GMAW/CMT process, Surf. Coat. Technol., 375 (2019), 688-693, doi:10.1016/j.surfcoat.2019.07.072.
16. B. Singaravel, B. Chakradhar, D. Soundar Rajan, A. Kiran Kumar, Optimization of friction stir welding process parameters using MCDM method, Materials Today: Proceedings, 76 (2023) 3, 597-601, doi:10.1016/j.matpr.2022.12.095.
17. Taguchi G. System of Experimental Design: Engineering Methods to Optimize Quality and Minimize Cost. White Plains: UNIPUB/Kraus International; 1987.
18. Kurt, H.I.; Oduncuoglu, M.; Yilmaz, N.F.; Ergul, E.; Asmatulu, R. A Comparative Study on the Effect of Welding Parameters of Austenitic Stainless Steels Using Artificial Neural Network and Taguchi Approaches with ANOVA Analysis. Metals 2018, 8, 326. https://doi.org/10.3390/met8050326.
19. K. Nandagopal, C. Kailasanathan, Analysis of mechanical properties and optimization of gas tungsten arc welding (GTAW) parameters on dissimilar metal titanium (6Al4V) and aluminium 7075 by Taguchi and ANOVA techniques, Journal of Alloys and Compounds, 682 (2016), 503-516, doi:10.1016/j.jallcom.2016.05.006.
20. S. Pandiarajan, S. Senthil Kumaran, L.A. Kumaraswamidhas, R. Saravanan, Interfacial microstructure and optimization of friction welding by Taguchi and ANOVA method on SA 213 tube to SA 387 tube plate without backing block using an external tool, Journal of Alloys and Compounds, 654 (2016), 534-545, doi:10.1016/j.jallcom.2015.09.152.
21. SJ, Chen, Hwang CL, and Hwang FP. "Fuzzy multiple attribute decision making methods and applications." книга (1992).
22. Lan, Tian-Syung. "Taguchi optimization of multi-objective CNC machining using TOPSIS." (2009): 917-922.
23. M. Atif Makhdoom, A. Ahmad, M. Kamran, K. Abid, W. Haider, Microstructural and electrochemical behavior of 2205 duplex stainless steel weldments, Surfaces and Interfaces, 9 (2017), 189-195, doi:10.1016/j.surfin.2017.09.007.
24. A. Järvenpää, M. Jaskari, M. Keskitalo, K. Mäntyjärvi, P. Karjalainen, Microstructure and mechanical properties of laser-welded high-strength AISI 301LN steel in reversion-treated and temper-rolled conditions, Procedia Manufacturing, 36 (2019), 216-223, doi:10.1016/j.promfg.2019.08.028.
25. J.C. Lippold, W.A. Baeslack III, I. Varol, Heat-affected zone liquation cracking in austenitic and duplex stainless steels, Welding Journal (USA), 71 (1988) 1.
26. Han Y, Zhang Y, Jing H, Gao Z, Xu L, Zhang Z and Zhao L (2020) Microstructure and Corrosion Studies on Different Zones of Super Duplex Stainless Steel UNS S32750 Weldment. Front. Mater. 7:251. doi: 10.3389/fmats.2020.00251.
27. V. Muthupandi, P. Bala Srinivasan, S.K. Seshadri, S. Sundaresan, Effect of weld metal chemistry and heat input on the structure and properties of duplex stainless steel welds, Materials Science and Engineering: A, 358 (2003) 1-2, 9-16, doi:10.1016/S0921-5093(03)00077-7.
28. Z. Zhang, Z. Wang, Y. Jiang, H. Tan, D. Han, Y. Guo, J. Li, Effect of post-weld heat treatment on microstructure evolution and pitting corrosion behavior of UNS S31803 duplex stainless steel welds, Corrosion Science, 62 (2012), 42-50, doi:10.1016/j.corsci.2012.04.047.
29. Lippold, John C., and Damian J. Kotecki. Welding metallurgy and weldability of stainless steels. 2005.
30. G. Chandrasekar, C. Kailasanathan, D.K. Verma, et al., Optimization of welding parameters, influence of activating flux and investigation on the mechanical and metallurgical properties of activated TIG weldments of AISI 316 L stainless steel, Trans Indian Inst Met, 70 (2017), 671-684, doi:10.1007/s12666-017-1046-5.
Published
2025-02-05
How to Cite
1.
Dhanasekaran S, Uvaraja VC. OPTIMIZING WELD QUALITY IN DISSIMILAR STAINLESS STEEL JOINTS FOR INDUSTRIAL APPLICATIONS. MatTech [Internet]. 2025Feb.5 [cited 2025Mar.25];59(1):21–30. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/1288