MODIFIED PHYSICALLY-BASED CONSTITUTIVE MODEL FOR As-CAST Mn18Cr18N AUSTENITIC STAINLESS STEEL AT ELEVATED TEMPERATURES
Abstract
The hot-deformation behavior of the as-cast Mn18Cr18N high-nitrogen austenitic stainless steel, produced with the electroslag-remelting metallurgical technology, was studied using isothermal-compression tests in a temperature range of 1223–1473 K) and a strain-rate range of 0.001–1 s–1). The flow-stress curves of the Mn18Cr18N steel were obtained under different hot-deformation conditions. By establishing the hyperbolic sine-law Zener-Hollomon equation, the hot-deformation activation energy of the Mn18Cr18N steel was obtained. Based on the mechanism of dislocation evolution, a physically-based constitutive model was established. In addition, the expression of the dynamic-recovery coefficient of the model was modified. Compared with the model before the modification, the modified constitutive model could effectively improve the prediction accuracy of the flow stress for the as-cast Mn18Cr18N austenitic stainless steel.
References
2 F. M. Qin, Y. J. Li, W. W. He, X. D. Zhao,H. Q. Chen, Effects of deformation microbands and twins on microstructure evolution of as-cast Mn18Cr18N austenitic stainless steel, Journal of Materials Research, 32 (2017) 20, 3864–3874, doi:10.1557/jmr.2017.389
3 Z. H. Wang, H. P. Xue, W. T. Fu, Fracture Behavior of High-Nitrogen Austenitic Stainless Steel Under Continuous Cooling: Physical Simulation of Free-Surface Cracking of Heavy Forgings, Metallurgical & Materials Transactions A, 49 (2018) 5, 1470–1474, doi:10.1007/s11661-018-4561-z
4 Y. C. Lin, J. Zhang, J. Zhong, Application of neural networks to predict the elevated temperature flow behavior of a low alloy steel, Computational Materials Science, 43 (2008) 4, 752–758, doi:10.1016/j.commatsci.2008.01.039
5 Q. Yang, X. Wang, X. Li, Z. Deng, Z. Jia, Z. Zhang, G. Huang, Q. Liu, Hot deformation behavior and microstructure of AA2195 alloy under plane strain compression, Materials Characterization, 131 (2017) 500–507, doi:10.1016/j.matchar.2017.06.001
6 J. H. Hollomon, Tensile Deformation, Transactions of the Metallurgical Society of AIME, 162 (1945), 268–290 (without doi)
7 C. M. Sellars, W. J. McTegart, On the mechanism of hot deformation,ActaMetallurgica, 14 (1966) 9, 1136–1138, doi:10.1016/0001-¬6160(66)90207-0
8 C. M. Sellars, Computer modeling of hot-working processes, Materials Science and Technology, 1 (1985) 4, 325–332, doi:10.1179/ mst.1985.1.4.325
9 B. S. Yu, S. L. Wang, T. Yang, Y. J. Fan, BP Neural Netwok Constitutive Model Based on Optimization with Genetic Algorithm for SMA,ActaMetallurgicaSinica, 53 (2017) 2, doi:10.11900/0412.1961. 2016.00218
10 L. Li, M. Q. Li, Constitutive model and optimal processing parameters of TC17 alloy with a transformed microstructure via kinetic analysis and processing maps, Materials Science & Engineering A, 698 (2017) 20, 302–312, doi:10.1016/j.msea.2017.05.034
11 J. L. He, F. Chen, B. Wang, L. B. Zhu, A modified Johnson-Cook model for 10%Cr steel at elevated temperatures and a wide range of strain rates, Materials Science & Engineering, A, 715 (2018) 7, 1–9, doi:10.1016/j.msea.2017.10.037
12 Y. C. Lin, X. M. Chen, D. X. Wen, M. S. Chen, A physically-based constitutive model for a typical nickel-based superalloy, Computational Materials Science, 83 (2014) 15, 282–289, doi:10.1016/ j.commatsci.2013.11.003
13 G. Z. Voyiadjis, A. H. Almasri, A physically based constitutive model for fcc metals with applications to dynamic hardness, Mechanics of Materials, 40 (2008) 6, 549–563, doi:10.1016/j.mechmat. 2007.11.008
14 F. Chen, X. D. Zhao, J. Y. Ren, H. Q. Chen, X. F. Zhang, Physically-Based Constitutive Modelling of As-Cast CL70 Steel for Hot Deformation, Metals and Materials International, (2019), doi:10.1007/s12540-019-00541-7
15 C. Zener, J. H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, Journal of Applied Physics, 15 (1944) 1, 22–32, doi:10.1063/ 1.1707363
16 Y. Estrin, H. Mecking, A unified phenomenological description of work hardening and creep based on one-parameter models, ActaMetallurgica, 32 (1984) 1, 57–70, doi:10.1016/0001-¬6160(84) 90202-5
17 H. Mecking, U. F. Kocks, Kinetics of flow and strain-hardening, ActaMetallurgica, 29 (1981) 11, 1865–1875, doi:10.1016/0001-¬6160(81)90112-7
18 N. Hansen, D. Kuhlmann-Wilsdorf, Low energy dislocation structures due to unidirectional deformation at low temperatures, Materials Science and Engineering, 81 (1986) 141–161, doi:10.1016/ 0025-5416(86)90258-2
19 Y. Estrin, Dislocation theory based constitutive modelling: foundations and applications, Journal of Materials Processing Technology, 80–81 (1998) 33–39, doi:10.1016/S0924-0136(98)00208-8
20 H. M. Zhang, G. Chen, Q. Chen, F. Han, Z. D. Zhao, A physically-based constitutive modelling of a high strength aluminum alloy at hot working conditions, Journal of Alloys and Compounds, 743 (2018) 283–293, doi:10.1016/j.jallcom.2018.02.039