EFFECT OF Nb, Ta, AND Ti MICROALLOYING ON THE SECONDARY HARDENING OF Mo-W TOOL STEEL
Abstract
This work investigates the influence of microalloying elements on the tempering process of a hot-work tool steel. The study examines the austenitisation temperatures and grain growth of a high thermal conductivity hot-work tool steel, with the addition of various microalloying elements: Nb+0.06 w/% Nb, Ta+0.03 w/% Ta, and Ti+0.006 w/% Ti, compared to a reference sample. Thermodynamic calculations are used to analyse the influence of microalloying on the transformation temperatures and carbide formation. Austenitisation temperatures of (1030, 1060, 1080, and 1100) °C are selected, and subsequent tempering is performed at (540, 580, 600, 620, and 640) °C. The investigation focuses on analysing the microstructure, hardness, and grain size. The results show that the microalloying elements have a positive influence on the retention of the grain size during austenitisation and on the enhancement of hardness during tempering. Electron microscopy is utilized to analyse the microstructure, which indicates the prevalence of Mo-W carbides. The carbides exhibit coarsening and morphological changes during high-temperature tempering. The secondary hardening peaks occur at temperatures between (600 and 620) °C, and are more pronounced by microalloying.
References
2 J.Y. Li, Y. L. Chen, J. H. Huo, Mechanism of improvement on strength and toughness of H13 die steel by nitrogen, Mater. Sci. Eng. A, 640, (2015), 16–23, doi:10.1016/j.msea.2015.05.006
3 R. Wu, W. Li, M. Chen, S. Huang, T. Hu, Improved mechanical properties by nanosize tungsten-molybdenum carbides in tungsten containing hot work die steels. Mater. Sci. Eng. A 812 (2021) 141140, doi:10.1016/j.msea.2021.141140.
4 R. Markežič, N. Mole, I. Naglič, R. Šturm, Time and temperature dependent softening of H11 hot-work tool steel and definition of an anisothermal tempering kinetic model. Mater. Today Commun. 22 (2020), doi:10.1016/j.mtcomm.2019.100744.
5 K. Grabnar, J. Burja, T. Balaško, A. Nagode, J. Medved, The influence of Nb, Ta and Ti modification on hot-work tool-steel grain growth during austenitization. Mater. Technol. 56 (2022) 331–338, doi:10.17222/mit.2022.486.
6 M. Vončina, T. Balaško, J. Medved, A. Nagode, Interface Reaction between Molten Al99.7 Aluminum Alloy and Various Tool Steels, Materials, 14 (2021) 24, 7708, doi:10.3390/ma14247708
7 B. C. De Cooman, J. G. Speer, Fundamentals of Steel Product Physical Metallurgy; AIST, Association for Iron & Steel Techno-logy: Warrendale, PA, USA, 2011.
8 B. Podgornik, M. Sedlaček, B. Žužek, A. Guštin, Properties of tool steels and their importance when used in a coated system, Coatings, 10 (2020) 3, 265, doi:10.3390/coatings10030265
9 Q. Zhou, X. Wu, N. Shi, J. Li, N. Min, Microstructure evolution and kinetic analysis of DM hot-work die steels during tempering. Mater. Sci. Eng. A, 528 (2011), 5696–5700, doi:10.1016/j.msea.2011.04.024.
10 A. Medvedeva, J. Bergström, S. Gunnarsson, J. Andersson, High-temperature properties and microstructural stability of hot-work tool steels. Mater. Sci. Eng. A, 523 (2009), 39–46, doi:10.1016/j.msea.2009.06.010.
11 N. B. Dhokey, S. S. Maske, P. Ghosh, Effect of tempering and cryogenic treatment on wear and mechanical properties of hot work tool steel (H13). Mater. Today Proc., 43 (2021), 3006–3013, DOI:10.1016/J.MATPR.2021.01.361.
12 E. Cabrol, C. Bellot, P. Lamesle, D. Delagnes, E. Povoden-Karadeniz, Experimental investigation and thermodynamic modeling of molybdenum and vanadium-containing carbide hardened iron-based alloys. J. Alloys Compd., 556 (2013), 203–209, doi:10.1016/j.jallcom.2012.12.119.
13 K. Chen, Z. Jiang, F. Liu, J. Yu, Y. Li, W. Gong, C. Chen, Effect of quenching and tempering temperature on microstruc-ture and tensile properties of microalloyed ultra-high strength suspension spring steel. Mater. Sci. Eng. A, 766 (2019), doi:10.1016/j.msea.2019.138272.
14 G. Yang, X. Sun, Z. Li, X. Li, Q. Yong, Effects of vanadium on the microstructure and mechanical properties of a high strength low alloy martensite steel. Mater. Des., 50 (2013), 102–107, doi:10.1016/j.matdes.2013.03.019.
15 C. Zhang, Q. Wang, J. Ren, R. Li, M. Wang, F. Zhang, K. Sun, Effect of martensitic morphology on mechanical properties of an as-quenched and tempered 25CrMo48V steel. Mater. Sci. Eng. A, 534 (2012), 339–346, doi:10.1016/j.msea.2011.11.078.
16 C. Wang, M. Wang, J. Shi, W. Hui, H. Dong, Effect of microstructural refinement on the toughness of low carbon martensitic steel. Scr. Mater., 58 (2008), 492–495, doi:10.1016/j.scriptamat.2007.10.053.
17 O. Haiko, V. Javaheri, K. Valtonen, A.; Kaijalainen, J. Hannula, J. Kömi, Effect of prior austenite grain size on the abrasive wear resistance of ultra-high strength martensitic steels. Wear, 454–455 (2020), 13–16, doi:10.1016/j.wear.2020.203336.
18 A. Karmakar, S. Kundu, S. Roy, S. Neogy, D. Srivastava, D. Chakrabarti, Effect of microalloying elements on austenite grain growth in Nb-Ti and Nb-V steels. Mater. Sci. Technol., 30 (2014), 653–664, doi:10.1179/1743284713Y.0000000386.
19 J. H. Hollomon, L. D. Jaffe, Time–temperature relations in tempering steels, Transactions of the American Institute of Mining and Metallurgical Engineers, 162 (1945), 223–249.
20 J. Mazurkiewicz, L. A. Dobrzański, E. Hajduczek, Comparison of the secondary hardness effect after tempering of the hot-work tool steels, Journal of Achievements in Materials and Manufacturing Engineering, 24 (2007), 119–122.
21 V. Leskovšek, B. Šuštaršič, G. Jutriša, The influence of austenitizing and tempering temperature on the hardness and fracture toughness of hot-worked H11 tool steel. J. Mater. Process. Technol., 178 (2006), 328–334, doi:10.1016/j.jmatprotec.2006.04.016.
22 H. Yang, J. H. Zhang, Y. Xu, M. A. Meyers, Microstructural characterization of the shear bands in Fe-Cr-Ni single crystal by EBSD. J. Mater. Sci. Technol., 24 (2008), 819–828.
23 J. Janovec, M. Svoboda, A. Výrostková, A. Kroupa, Time-temperature-precipitation diagrams of carbide evolution in low alloy steels. Mater. Sci. Eng. A, 402 (2005), 288–293, doi:10.1016/j.msea.2011.03.086.
24 J. G. Jung, J. S. Park, J. Kim, Y. K. Lee, Carbide precipitation kinetics in austenite of a Nb-Ti-V microalloyed steel. Mater. Sci. Eng. A, 528 (2011), 5529–5535.
25 J. Dong, X. Zhou, Y. Liu, C. Li, C. Liu, Q. Guo, Carbide precipitation in Nb-V-Ti microalloyed ultra-high strength steel during tempering. Mater. Sci. Eng. A, 683 (2017), 215–226, doi:10.1016/j.msea.2016.12.019.
26 E. Kaschnitz, P. Hofer, W. Funk, Thermophysical properties of a hot-work tool-steel with high thermal conductivity, Int. J. Thermophys., 34 (2013) 5, 843–850, doi:10.1007/s10765-012-1162-8.
27 I. Valls, A. Hamasaiid, A. Padré, High thermal conductivity and high wear resistance tool steels for cost-effective hot stamping tools, J. Phys. Conf. Ser., 896 (2017) 012046, doi:10.1088/1742-6596/896/1/012046
28 J. Chen, C. Liu, Y. Liu, B. Yan, H. Li, Effects of tantalum content on the microstructure and mechanical properties of low-carbon RAFM steel. J. Nucl. Mater, 479 (2016), 295–301, doi.:10.1016/j.jnucmat.2016.07.029.
29 J. Foder, J. Burja, G. Klančnik, Grain size evolution and mechanical properties of Nb, V–Nb, and Ti–Nb boron type S1100QL steels. Metals, 11 (2021) 1–16, doi:10.3390/met11030492.