PRELIMINARY INVESTIGATION INTO THE FORMATION OF LiCo0.8M0.2O2-δ (M = Zr, Ca) AS TRIPLE-CONDUCTING OXIDE CATHODES FOR SOLID OXIDE FUEL CELLS

  • Muhammad Amirul Mamsor Solid Oxide Fuel Cell Group, Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Nurul Akidah Baharuddin Solid Oxide Fuel Cell Group, Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Nur Wardah Norman Solid Oxide Fuel Cell Group, Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Mahendra Rao Somalu Lynas Malaysia Sdn Bnd, PT 17212, Jalan Gebeng 3, Kawasan Perindustrian Gebeng, 26080 Kuantan, Pahang, Malaysia
Keywords: solid oxide fuel cell, triple-conducting oxide cathode, glycine-nitrate process

Abstract

A solid oxide fuel cell (SOFC) is an efficient electrochemical energy conversion device with low emissions. The cathode is one of the principal components of an SOFC, responsible for the reduction reaction. Triple conducting (H+/O2–/e) cathodes are promising due to their enhanced performance, but existing materials like LiCoO2 (LCO) face stability issues at high temperatures caused by a high cobalt content. Hence, the study focused on synthesizing LiCo0.8M0.2O2-δ (M = dopant) using a glycine-nitrate process and introducing dopants (Zr/Ca) to the cobalt site of LCO to improve stability. Synthesized cathode powders were analyzed using a thermal gravimetric analysis (TGA), X-ray diffractometry (XRD), and field emission scanning electron microscopy/energy dispersive X-ray spectrometry (FESEM/EDX) to assess the thermal decomposition behavior, phase and structure formation, and microstructure, respectively. The XRD analysis confirmed a successful synthesis of homogeneous LiCo0.8M0.2O2-δ cathode powders (M = Zr, Ca) at a calcination temperature of 800 °C. The FESEM/EDX analysis indicated homogenous elemental distribution within the powders, with final experimental molar ratios of LiCo0.79Ca0.21O2-δ and LiCo0.78Zr0.22O2-δ for the Ca- and Zr-doped cathodes, respectively. This successful synthesis paves the way for further research on the stability and performance of these doped cathodes in SOFC applications.

References

1N. Mahato, A. Banerjee, A. Gupta, S. Omar & K. Balani, Progress in material selection for solid oxide fuel cell technology: A review, Prog. Mater. Sci., 72 (2015), 141–337, doi: 10.1016/j.pmatsci.2015.01.001

2L. Fan, P.-C. Su, Layer-structured LiNi0.8Co0.2O2: A new triple (H+/O2−/e−) conducting cathode for low temperature proton conducting solid oxide fuel cells, J. Power Sources, 306 (2016), 369–377, doi: 10.1016/j.jpowsour.2015.12.015

3N.W. Norman, W.N.A. Wan Yusoff, A. Abdul Samat, M.R. Somalu, A. Muchtar, N.A. Baharuddin, Fabrication Process of Cathode Materials for Solid Oxide Fuel Cells, J. Adv. Res. Fluid Mech. Therm. Sci., 50 (2020) 2, 153–160
4G. Li, Y. Zhang, Y. Ling, B. He, J. Xu, L. Zhao, Probing novel triple phase conducting composite cathode for high performance protonic ceramic fuel cells, Int. J. Hydrog. Energy, 41 (2016), 9, 5074–5083, doi: 10.1016/j.ijhydene.2016.01.068

5A. Zhu, G. Zhang, T. Wan, T. Shi, H. Wang, M. Wu, C. Wang, S. Huang, Y. Guo, H. Yu, Z. Shao, Evaluation of SrSc0.175Nb0.025Co0.8O3-δ perovskite as a cathode for proton-conducting solid oxide fuel cells: The possibility of in situ creating protonic conductivity and electrochemical performance, Electrochim. Acta, 259, (2018), 559–565, doi: 10.1016/j.electacta.2017.11.037

6Z. Zhang, J. Wang, Y. Chen, S. Tan, Z. Shao, D. Chen, In situ formation of a 3D core-shell and triple-conducting oxygen reduction reaction electrode for proton-conducting SOFCs, J. Power Sources, 385, (2018), 76–83, doi: 10.1016/j.jpowsour.2018.03.029

7L. Zhang, J. Yang, J. Li, A novel composite cathode for intermediate temperature solid oxide fuel cell, J. Power Sources, 269, (2014), 723–726, doi: 10.1016/j.jpowsour.2014.07.076

8Y. Mi, W. Zhang, H. Deng, X. Wang, L. Fan, B. Zhu, Rare-earth oxide–Li0.3Ni0.9Cu0.07Sr0.03O2-δ composites for advanced fuel cells, Int. J. Hydrog. Energy, 42, (2017), 34, 22214–22221, doi: 10.1016/j.ijhydene.2017.03.025

9R. Lan, S. Tao, High ionic conductivity in a LiFeO2-LiAlO2 composite under H2/air fuel cell conditions, Chem. Eur. J., 21, (2015), 3, 1350–1358, doi: 10.1002/chem.201404476

10L. Fan, H. Zhang, M. Chen, C. Wang, H. Wang, M. Singh, B. Zhu, Electrochemical study of lithiated transition metal oxide composite as symmetrical electrode for low temperature ceramic fuel cells, Int. J. Hydrog. Energy, 38, (2013), 26, 11398–11405, doi: 10.1016/j.ijhydene.2013.06.050

11N.N.M. Tahir, N.A. Baharuddin, M.R. Somalu, A. Muchtar, A. Abd Samat, J.W. Lai, Comparative Analysis of LiCo0. 6Sr0.4O2 Cathode Electrochemical Performance in Oxide-and Proton-Conducting Intermediate-Temperature Solid Fuel Oxide Cells, Journal of Advanced Research in Micro and Nano Engineering, 15, (2024), 1, 22-30

12G. Li, S. Zhou, P. Wang, J. Zhao, Halogen-doping in LiCoO2 cathode materials for Li-ion batteries: insights from ab initio calculations, RSC Adv., 5, (2015), 130, 107326-107332, doi: 10.1039/C5RA21258H

13J. Padarti, J. Karanam, O. Hussain, Enhanced electrochemical properties of as grown LiCoO2 film cathodes: Influence of silicon substrate surface texturing, Mater. Chem. Phys., 143, (2014), 2, 536-544, doi: 10.1016/j.matchemphys.2013.09.029

14R. Lan, S. Tao, Novel Proton Conductors in the Layered Oxide Material LixlAl0.5Co0.5O2, Adv. Energy Mater., 4 (2014), 7, 1301683, doi: 10.1002/aenm.201301683
15S. Mansur, N.A. Baharuddin, W.N.A. Wan Yusoff, A.J. Abd Aziz, M.R. Somalu, Effect of Calcination Temperature on the Structural and Electrochemical Behaviour of Li-Based Cathode for Intermediate-Temperature SOFC Application, Processes, 11 (2023), 7, 2139, doi: 10.3390/pr11072139

16W.N.A. Wan Yusoff, M.R. Somalu, N.A. Baharuddin, A. Muchtar, J.W. Lai, Enhanced performance of lithiated cathode materials of LiCo0.6X0.4O2 (X = Mn, Sr, Zn) for proton-conducting solid oxide fuel cell applications, Int. J. Energy Res., 44, (2020), 14, 11783-11793, doi: 10.1002/er.5819

17A. Rabiezadeh, A.M. Hadian, A. Ataie, Synthesis and sintering of TiB2 nanoparticles, Ceram. Int., 40, (2014), 10, 15775-15782, doi: 10.1016/j.ceramint.2014.07.102

18F. Yan, W. Xiong, E. Faierson, G.B. Olson, Characterization of nano-scale oxides in austenitic stainless steel processed by powder bed fusion, Scr. Mater., 155, (2018), 104-108, doi: 10.1016/j.scriptamat.2018.06.011

19B. Choudhury, A. Choudhury, Oxygen vacancy and dopant concentration dependent magnetic properties of Mn doped TiO2 nanoparticle, Curr. Appl. Phys., 13, (2013), 6, 1025-1031, doi: 10.1016/j.cap.2013.02.007

20N.A. Baharuddin, A. Muchtar, M.R. Somalu, M. Seyednezhad, Influence of mixing time on the purity and physical properties of SrFe0.5Ti0.5O3-δ powders produced by solution combustion. Powder Technol., 313, (2017), 382-388, doi: 10.1016/j.powtec.2017.03.035
Published
2025-02-05
How to Cite
1.
Mamsor MA, Baharuddin NA, NormanNW, SomaluMR. PRELIMINARY INVESTIGATION INTO THE FORMATION OF LiCo0.8M0.2O2-δ (M = Zr, Ca) AS TRIPLE-CONDUCTING OXIDE CATHODES FOR SOLID OXIDE FUEL CELLS. MatTech [Internet]. 2025Feb.5 [cited 2025Mar.25];59(1):75–81. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/1181