INVESTIGATION OF THE MECHANICAL AND TRIBOLOGICAL BEHAVIOURS OF CUPOLA SLAG AND MWCNT-REINFORCED EPOXY HYBRID NANOCOMPOSITES: A SUSTAINABLE APPROACH FOR ENVIRONMENTAL PRESERVATION
Abstract
This experimental investigation explores the mechanical and tribological characteristics of cupola slag (CS) and multiwall carbon nanotubes (MWCNTs) reinforced hybrid nanofiller epoxy composites. Cupola slag is an industrial by-product that is generated during the melting of cast iron. The disposal of slag residues in landfills results in environmental pollution. In the context of environmental preserving as well developing new engineering composites material from waste to resource. MWCNTs possess an excellent strength-to-weight ratio, high stiffness, and thermal properties. The mechanical and tribological characteristics of the hybrid nanocomposites comprising epoxy were examined by varying the weight fraction of fillers composed of CS and MWCNTs. The experimental results indicated that the ECSM3 hybrid nanocomposites have superior tensile strength and the flexural modulus improved by 92 % and 78 % respectively when compared with epoxy. Similarly, the tribology performance of the ECSM3 exhibited improved specific wear resistance of 97 %, 106 % and 88 % on the dry-sliding loads of 10 N, 20 N and 30N, respectively. A morphological analysis was carried out on fractured and worn surfaces of the specimen to understand the homogeneous dispersion and matrix-interlocking mechanism between the hybrid nanofillers and the epoxy matrix. The integration of CS alongside MWCNTs for the fabrication of epoxy hybrid nanocomposites represents a stride towards sustainable and eco-friendly technology in the production of multifunctional composite materials for diverse engineering applications.
References
2 J. Parameswaranpillai, N. Hameed, J. Pionteck, Woo, E. (eds), Handbook of Epoxy Blends, Springer, 2017, doi:10.1007/978-3-319-40043-3_14
3 L. Guadagno, L. Vertuccio, A. Sorrentino, M. Raimondo, C. Naddeo, V. Vittoria, G. Iannuzzo, E. Calvi, S. Russo, Mechanical and barrier properties of epoxy resin filled with multi-walled carbon nanotubes, Carbon, 47 (2009) 10, 2419-2430, doi:10.1016/j.carbon.2009.04.035
4 T. Shen, Y. Chen, W. Liu, J. Ma, S. Yang, Y. Wang, G. Wang, Preparation and properties of carbon nanotube/polymer composites, J. Appl. Polym. Sci., 135(2018) 11, 89-98, doi: 10.1016/j.compositesa.2018.02.030
5 Garima Mittal, Vivek Dhand, Kyong Yop Rhee, Soo-Jin Park, Wi Ro Lee, A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites, J. Ind. Eng. Che., 21 (2015), 11-25, doi:10.1016/j.jiec.2014.03.022
6 Jun Xu, Aihong Kang, Zhengguang Wu, Peng Xiao, Yongfan Gong, Effect of high-calcium basalt fiber on the workability, mechanical properties and microstructure of slag-fly ash geopolymer grouting material, Constr. Build. Mater., 302 (2021), 124089, doi: 10.1016/j.conbuildmat.2021.124089
7 K.R. Kumar, K.M. Mohanasundaram, G. Arumaikkannu, R. Subramanian, Effect of particle size on mechanical properties and tribological behaviour of aluminium/fly ash composites, Sci. Eng. Compos. Mater., 19 (2012) 3, 247–253, doi:10.1515/secm-2011-0139
8 H.X. Peng, Z. Fan, D.Z. Wang, In situ Al3Ti-Al2O3 intermetallic matrix composite: synthesis, microstructure, and compressive behavior, J. Mater. Res., 15 (2000) 9, 1943–1949, doi:10.1557/JMR.2000.0280.
9 N. Sombatsompop, S. Thongsang, T. Markpin, E. Wimolmala, Fly ash particles and precipitated silica as fillers in rubbers. I. Untreated fillers in natural rubber and styrene-butadiene rubber compounds, J. Appl. Polym. Sci., 93 (2004), 2119–2130, doi:10.1002/app.20693
10 S.M. Kulkarni, Kishore, Effect of filler-fiber interactions on compressive strength of fly ash and short-fiber epoxy composites, J. Appl. Polym. Sci., 87 (2003), 836–841, doi:10.1002/app.11501
11V.K. Srivastava, P.S. Shembekar, R. Prakash, Fracture behaviour of fly-ash filled FRP composites, Compos. Struct., 10 (1988) 4, 271-279, doi: 10.1016/0263-8223(88)90006-2
12 Kishore, S.M Kulkarni, S. Sharathchandra, D. Sunil, On the use of an instrumented set-up to characterize the impact behaviour of an epoxy system containing varying fly ash content, Polym. Test., 21 (2002), 763–771, doi:10.1016/S0142-9418(02)00008-9
13 W. Tang, G. Pignatta S.M.E. Sepasgozar, Life-cycle assessment of fly ash and cenosphere-based geopolymer material, Sustainability, 12 (2021), 11167, doi:10.3390/su132011167
14 R. Yang, Effect of multi-pass friction stir processing on microstructure and mechanical properties of Al3Ti/A356 composites, Mater. Char., 106 (2015) 62–69, doi:10.1016/j.matchar.2015.05.019
15 J. Ladomerský, I. Janotka, E. Hroncov´a, I. Najden´a, One-year properties of concrete with partial substitution of natural aggregate by cupola foundry slag, J. Clean. Prod. 131 (2016) 739–746, doi:10.1016/j.jclepro.2016.04.101
16 V.K. Mistry, D.J. Varia, Green concrete by replacing coarse aggregate with cupola slag for environmental protection, Smart Innov. Syst. Technol. 161 (2020) 223–237, doi:10.1007/978-981-32-9578-0-20
17 A. Pribulova, D. Baricova, P. Futas, M. Pokusova, S. Eperjesi, Cupola furnace slag: its origin, properties and utilization, Int. J. Med. 13 (2019) 3, 627–640, doi:10.1007/s40962-019-00314-3