SIMULATION OF HIGH-TEMPERATURE CORROSION BEHAVIOR OF Ti6Al4V ALLOY IN MARINE ENVIRONMENTS

  • Rongtao Zhu Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
  • Liang Zhang Shenzhen Polytechnic University
  • Yuan Bo Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
  • Wei Chen Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
  • Shilu Chen Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
  • Shan Chi Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
  • Chunjiang Guo Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
  • Zhiwen Xie School of Mechanical Engineering and Automation, University of Science and Technology Liaoning, Anshan 114051, China
Keywords: Ti6Al4V alloy, high-temperature oxidation, hot-salt test, marine environment

Abstract

High-temperature oxidation and corrosion behavior of Ti6Al4V alloy at 650 °C for 1000 h were investigated using a salt mixture (25 w/% NaCl and 75 w/% Na2SO4) as the thermal corrosion medium. The mass increase due to the alloy’s oxidation and thermal corrosion were analyzed quantitatively. The surface morphology and cross-sectional structure of the alloy after oxidation and thermal corrosion were scrutinized and analyzed via X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). Results show that Ti6Al4V alloy exhibits a certain antioxidant property in a high-temperature oxidation environment at 650 °C, but this antioxidant property is gradually weakened with the prolongation of the oxidization time. The synergistic effect of oxygen and hot salt further accelerates the corrosion degradation of the oxide layer of Ti6Al4V alloy in the high-temperature hot-salt environment at 650 °C.

References

1 J. M. Cai, C. X. Cao, Alloy Design and Application Expectation of A New Generation 600℃ High Temperature Titanium Alloy, J. Aeronaut. Mater., 34 (2014) 4, 27-36, doi:10.11868/j.issn.1005-5053.2014.4.002
2 K. Zhang, Z. W. Li, W. Gao, Hot corrosion behaviour of Ti–Al based intermetallics, Mater. Lett., 57 (2002) 4, 834-843, doi:10.1016/S0167-577X(02)00882-0
3 X. X. Ma, Y. D. He, J.P. Lin, D. Wang, J. Zhang, Effect of a magnetron sputtered (Al2O3–Y2O3)/(Pt–Au) laminated coating on hot corrosion resistance of 8Nb–TiAl alloy, Surf. Coat. Technol., 206 (2012) 10, 2690-2697, doi:10.1016/j.surfcoat.2011.11.028
4 T. Kitashima, T. Hara, Y. Yang, Y. Hara, Mater. Des.,137 (2018) 5, 355-360, doi:10.1016/j.matdes.2017.10.043
5 A. Evstifeev, N. Kazarinov, Y. Petrov, L. Witekx, A. Bednarz, Eng. Failure Anal., 87 (2018), 15-21, https://doi.org/10.1016/j.engfailanal.2018.01.006
6 Z. Cao, L. Sun, Q. Cao, Adv. Mat. Res., 233-235 (2011), 2409-2412, doi:10.4028/www.scientific.net/AMR.233-235.2409
7 M. W. Reedy, T. J. Eden, J. K. Potter, D. E. Wolfe, Surf. Coat. Technol., 206 (2011) 2-3, 464-472, doi:10.1016/j.surfcoat.2011.07.063
8 L. Swadźba, B. Formanek, H. M. Gabriel P. Liberski, P. Podolski, Erosion- and Corrosion-Resistant Coatings for Aircraft Compressor Blades, Surf. Coat. Technol., 62 (1993) 1-3, 486-492, doi:10.1016/0257-8972(93)90288-Y
9 L. Shao, G. L. Xie, X. H. Liu, W. Yuan, J. B. Yu, Z. H. Hao, W. R. Lu, X. Liu, Combustion behaviour and mechanism of TC4 and TC11 alloys, Corros. Sci., 168 (2020) 15, 108564, doi:10.1016/j.corsci.2020.108564
10 H. L. Du, P. K. Datt, D. B. Lewis and J. S. Burnell-Gray, Air Oxidation of Ti6Al4V Alloy between 650 and 850°C, Corros. Sci., 36 (1994) 4, 631-642, doi:10.1016/0010-938X(94)90069-8
11 J. W. Liu, Q. D. Sun, C. A. Zhou, X. B. Wang, H. Li, K. Guo, J. Sun, Mater. Sci. Eng.,766 (2019) 24, 138319, doi:10.1016/j.msea.2019.138319
12 A. Casadebaigt, J. Hugues, D.Monceau, High temperature oxidation and embrittlement at 500–600 °C of Ti-6Al-4V alloy fabricated by Laser and Electron Beam Melting, Corros. Sci., 175 (2020), 108875, doi:org/10.1016/j.corsci.2020.108875
13 H. Guleryuz, H. Cimenoglu, Oxidation of Ti–6Al–4V alloy, J. Alloys Compd., 472 (2009) 1-2, 241-246, doi:10.1016/j.jallcom.2008.04.024
14 J. Q. Li, X. Lin, P. F. Guo, M. H. Song, W. D. Huang, Electrochemical behaviour of laser solid formed Ti–6Al–4V alloy in a highly concentrated NaCl solution, Corros. Sci., 142 (2018), 161-174, doi.10.1016/j.corsci.2018.07.023
15 W. Zhao, B. Xu, M. Yue M, S. Gong, Inter-phase selective corrosion of γ-TiAl alloy in molten salt environment at high temperature, Prog. Nat. Sci.: Mater. Int., 21 (2011) 4, 322-329 , doi:10.1016/S1002-0071(12)60064-1
16 M Mitoraj-Królikowska, E. Godlewska, Hot corrosion behaviour of (γ + α2)-Ti-46Al-8Nb (at.%) and α-Ti-6Al-1Mn (at.%) alloys, Corros. Sci., 115 (2016), 18-29, doi:10.1016/j.corsci.2016.11.006
17 Y. H. Qian, X. C. Li, M. S. Li, J. J. Xu, B Lu, Hot corrosion of modified Ti3Al-based alloy coated with thin Na2SO4 film at 910 and 950 °C in air, Trans. Nonferrous Met. Soc. China, 27 (2017) 4, 954-961, doi:10.1016/S1003-6326(17)60111-0
18 J. J. Dai, J. Y. Zhu, C. Z. Chen, F. Weng, High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: A review, J. Alloys Compd., 685 (2016), 784-798, doi:10.1016/j.jallcom.2016.06.212
19 Y. Garip, Investigation of isothermal oxidation performance of TiAl alloys sintered by different processing methods, Intermetallics, 127 (2020), 106985, doi:10.1016/j.intermet.2020.106985
20 F. Omidbakhsh, A. R. Ebrahimi, S. H. Mousavi, R. A. Khosroshahi, S. Nazarpour, Effect of oxygen boost diffusion treatment on fatigue behavior of Ti–4Al–2V alloy, Surf. Coat. Technol, 205 (2011) 8-9, 2954-2963, doi:10.1016/j.surfcoat.2010.11.004
21 E. Aghion, I. Guinguis, J. Goldman, Corrosion Behavior of Nano/Sub-Micron F401 Titanium Alloy, Adv. Eng. Mater., 17 (2015) 5, 626-631, doi:10.1002/adem.201400147
22 Y. Q. Qiao, J. P. Kong, X. P. Guo, Hot corrosion phenomena of Nb-Ti-Si based alloy and its silicide coating induced by different corrosive environments at 900 °C, Ceram. Int., 44 (2018) 7, 7978-7990 , doi:10.1016/j.ceramint.2018.01.238
23 C. Vitelaru, N. Ghiban, A.C. ParauM Balaceanu, F. Miculescu, A. Vladescu, Materialwiss. Werkstofftech., 45 (2014) 2, 91-98 , doi:10.1002/mawe.201400191
24 R. D. Liu, S. M. Jiang, H. J. Yu, J. Gong, C. Sun, Preparation and hot corrosion behaviour of Pt modified AlSiY coating on a Ni-based superalloy, Corros. Sci., 104 (2016), 162-172, doi:10.1016/j.corsci.2015.12.007
25 J. H. He, X. P. Guo, Y. Q. Qiao, Microstructure evolution and hot corrosion behavior of Zr-Y modified silicide coating prepared by two-step process, Corros. Sci., 156 (2019), 44-57, doi:10.1016/j.corsci.2019.05.010
26 J. R. Nicholls, J. Leggett, P. Andrews, Hot Salt Corrosion of titanium aluminides, Mater. Corros., 48 (1997) 1, 56-64, doi:10.1002/maco.19970480110
27 O. S. Kalakhan, Kinetic Regularities of the Electrochemical Processes of Corrosion Fatigue in Titanium Alloys, Mater. Sci., 39 (2003) 5, 615-628, doi:10.1023/B:MASC.0000023500.42249.2b
Published
2025-02-05
How to Cite
1.
Zhu R, Zhang L, Bo Y, Chen W, Chen S, Chi S, Guo C, Xie Z. SIMULATION OF HIGH-TEMPERATURE CORROSION BEHAVIOR OF Ti6Al4V ALLOY IN MARINE ENVIRONMENTS. MatTech [Internet]. 2025Feb.5 [cited 2025Mar.25];59(1):83–92. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/1172