CORROSION BEHAVIOUR OF ADDITIVELY MANUFACTURED METALLIC MATERIALS
Abstract
Additive manufacturing (AM) represents a technological advancement over traditional manufacturing methods, offering cost-effective production of high-quality, geometrically complex components for various applications. With its ability to rapidly manufacture metallic parts and a capability to better customise products due to the possible recycling of used powder materials, AM facilitates customized product development. On the other hand, the technology raises questions regarding microstructure, residual stresses, porosity and surface roughness. All these aspects need to be evaluated to achieve the quality of the end products. This paper reviews the corrosion behaviour of AM-produced metallic materials, examining how various factors, including porosity, microstructure, melt-pool boundaries, residual stresses, and surface roughness, influence the end-product quality.
References
[2] A. Dass, A. Moridi, State of the Art in Directed Energy Deposition: From Additive Manufacturing to Materials Design, COATINGS. 9 (2019). doi:10.3390/coatings9070418.
[3] Z. Liang, W. Lifang, L. Guangqi, Z. Gangxian, S. Shihong, Research Progress on Coaxial Powder Feeding Nozzle for Laser Metal Additive Manufacturing, LASER \& Optoelectron. Prog. 57 (2020). doi:10.3788/LOP57.050002.
[4] H. Fayazfar, M. Salarian, A. Rogalsky, D. Sarker, P. Russo, V. Paserin, E. Toyserkani, A critical review of powder-based additive manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties, Mater. \& Des. 144 (2018) 98–128. doi:10.1016/j.matdes.2018.02.018.
[5] M. Ansari, E. Jabari, E. Toyserkani, Opportunities and challenges in additive manufacturing of functionally graded metallic materials via powder-fed laser directed energy deposition: A review, J. Mater. Process. Technol. 294 (2021). doi:10.1016/j.jmatprotec.2021.117117.
[6] X. Niu, S. Singh, A. Garg, H. Singh, B. Panda, X. Peng, Q. Zhang, Review of materials used in laser-aided additive manufacturing processes to produce metallic products, Front. Mech. Eng. 14 (2019) 282–298. doi:10.1007/s11465-019-0526-1.
[7] Z. Liu, Q. Zhou, X. Liang, X. Wang, G. Li, K. Vanmeensel, J. Xie, Alloy design for laser powder bed fusion additive manufacturing: a critical review, Int. J. Extrem. Manuf. 6 (2024). doi:10.1088/2631-7990/ad1657.
[8] M. Lowther, S. Louth, A. Davey, A. Hussain, P. Ginestra, L. Carter, N. Eisenstein, L. Grover, S. Cox, Clinical, industrial, and research perspectives on powder bed fusion additively manufactured metal implants, Addit. Manuf. 28 (2019) 565–584. doi:10.1016/j.addma.2019.05.033.
[9] L. Liu, G. Wang, J. Liu, M. Cai, A review: finishing technologies of parts made by metal powder-bed additive manufacturing, Int. J. Manuf. Res. 18 (2023) 1–27. doi:10.1504/IJMR.2023.129299.
[10] W.E. Frazier, Metal Additive Manufacturing: A Review, J. Mater. Eng. Perform. 23 (2014) 1917–1928. doi:10.1007/s11665-014-0958-z.
[11] D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Additive manufacturing of metals, ACTA Mater. 117 (2016) 371–392. doi:10.1016/j.actamat.2016.07.019.
[12] J.H. Warner, S.P. Ringer, G. Proust, Strategies for metallic powder reuse in powder bed fusion: A review, J. Manuf. Process. 110 (2024) 263–290. doi:10.1016/j.jmapro.2023.12.066.
[13] M. Seifi, A. Salem, J. Beuth, O. Harrysson, J.J. Lewandowski, Overview of Materials Qualification Needs for Metal Additive Manufacturing (vol 68, pg 747, 2016), JOM. 68 (2016) 1492. doi:10.1007/s11837-016-1901-6.
[14] L. Zhao, L. Song, J.G.S. Macias, Y. Zhu, M. Huang, A. Simar, Z. Li, Review on the correlation between microstructure and mechanical performance for laser powder bed fusion AlSi10Mg, Addit. Manuf. 56 (2022). doi:10.1016/j.addma.2022.102914.
[15] S. Liu, Y.C. Shin, Additive manufacturing of Ti6Al4V alloy: A review, Mater. Des. 164 (2019). doi:10.1016/j.matdes.2018.107552.
[16] D.P. Dowling, I.S. Miller, M. Ardhaoui, W.M. Gallagher, Effect of Surface Wettability and Topography on the Adhesion of Osteosarcoma Cells on Plasma-modified Polystyrene, J. Biomater. Appl. 26 (2011) 327–347. doi:10.1177/0885328210372148.
[17] A.H. Md Yusop, A. Al Sakkaf, H. Nur, Modifications on porous absorbable Fe-based scaffolds for bone applications: A review from corrosion and biocompatibility viewpoints, J. Biomed. Mater. Res. PART B-APPLIED Biomater. 110 (2022) 18–44. doi:10.1002/jbm.b.34893.
[18] S. Sanchez, P. Smith, Z. Xu, G. Gaspard, C.J. Hyde, W.W. Wits, I.A. Ashcroft, H. Chen, A.T. Clare, Powder Bed Fusion of nickel-based superalloys: A review, Int. J. Mach. TOOLS \& Manuf. 165 (2021). doi:10.1016/j.ijmachtools.2021.103729.
[19] H. Chen, L. Yuan, W. Song, Z.K. Wu, D. Li, Biocompatible polymer materials: Role of protein-surface interactions, Prog. Polym. Sci. 33 (2008) 1059–1087. doi:10.1016/j.progpolymsci.2008.07.006.
[20] M. Armstrong, H. Mehrabi, N. Naveed, An overview of modern metal additive manufacturing technology, J. Manuf. Process. 84 (2022) 1001–1029. doi:10.1016/j.jmapro.2022.10.060.
[21] M. Godec, Č. Donik, A. Kocijan, B. Podgornik, D.A. Skobir Balantič, Effect of post-treated low-temperature plasma nitriding on the wear and corrosion resistance of 316L stainless steel manufactured by laser powder-bed fusion, Addit. Manuf. 32 (2020). doi:10.1016/j.addma.2019.101000.
[22] D.A.S. Balantic, C. Donik, B. Podgornik, A. Kocijan, M. Godec, Improving the surface properties of additive-manufactured Inconel 625 by plasma nitriding, Surf. \& COATINGS Technol. 452 (2023). doi:10.1016/j.surfcoat.2022.129130.
[23] M. Godec, F. Ruiz-Zepeda, B. Podgornik, C. Donik, A. Kocijan, D.A.S. Balantic, The influence of the plasma-nitriding temperature on the microstructure evolution and surface properties of additive-manufactured 18Ni300 maraging steel, Surf. \& COATINGS Technol. 433 (2022). doi:10.1016/j.surfcoat.2022.128089.
[24] M. Godec, B. Podgornik, A. Kocijan, C. Donik, D.A.S. Balantic, Use of plasma nitriding to improve the wear and corrosion resistance of 18Ni-300 maraging steel manufactured by selective laser melting, Sci. Rep. 11 (2021). doi:10.1038/s41598-021-82572-y.
[25] Y. Chen, C. Liu, H. Yan, Y. Fan, J. Wang, Y. Cui, Effect of gas nitriding on 316 L stainless steel lattice manufactured via selective laser melting, Surf. \& COATINGS Technol. 441 (2022). doi:10.1016/j.surfcoat.2022.128559.
[26] G.C. Mondragon-Rodriguez, N. Torres-Padilla, N. Camacho, D.G. Espinosa-Arbelaez, G. de Leon-Nope V, J.M. Gonzalez-Carmona, J.M. Alvarado-Orozco, Surface modification and tribological behavior of plasma nitrided Inconel 718 manufactured via direct melting laser sintering method, Surf. \& COATINGS Technol. 387 (2020). doi:10.1016/j.surfcoat.2020.125526.
[27] C. Funch V, T.L. Christiansen, M.A.J. Somers, Gaseous nitriding of additively manufactured maraging steel; nitriding kinetics and microstructure evolution, Surf. \& COATINGS Technol. 432 (2022). doi:10.1016/j.surfcoat.2021.128055.
[28] K. Egashira, T. Furumoto, K. Hishida, S. Abe, T. Koyano, Y. Hashimoto, A. Hosokawa, Formation Mechanism of Pores Inside Structure Fabricated by Metal-Based Additive Manufacturing, Int. J. Autom. Technol. 13 (2019) 330–337. doi:10.20965/ijat.2019.p0330.
[29] A.H. Ettefagh, S. Guo, J. Raush, Corrosion performance of additively manufactured stainless steel parts: A review, Addit. Manuf. 37 (2021). doi:10.1016/j.addma.2020.101689.
[30] B. Mooney, K. Kourousis I, R. Raghavendra, Plastic anisotropy of additively manufactured maraging steel: Influence of the build orientation and heat treatments, Addit. Manuf. 25 (2019) 19–31. doi:10.1016/j.addma.2018.10.032.
[31] Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling, R.T. Ott, M.K. Santala, P.J. Depond, M.J. Matthews, A. V Hamza, T. Zhu, Additively manufactured hierarchical stainless steels with high strength and ductility, Nat. Mater. 17 (2018) 63+. doi:10.1038/NMAT5021.
[32] Q. Chao, V. Cruz, S. Thomas, N. Birbilis, P. Collins, A. Taylor, P.D. Hodgson, D. Fabijanic, On the enhanced corrosion resistance of a selective laser melted austenitic stainless steel, Scr. Mater. 141 (2017) 94–98. doi:10.1016/j.scriptamat.2017.07.037.
[33] K.D. Ralston, N. Birbilis, Effect of Grain Size on Corrosion: A Review, CORROSION. 66 (2010). doi:10.5006/1.3462912.
[34] B. Larisch, U. Brusky, H.J. Spies, Plasma nitriding of stainless steels at low temperatures, Surf. \& COATINGS Technol. 116 (1999) 205–211. doi:10.1016/S0257-8972(99)00084-5.
[35] D.E. Williams, M.R. Kilburn, J. Cliff, G.I.N. Waterhouse, Composition changes around sulphide inclusions in stainless steels, and implications for the initiation of pitting corrosion, Corros. Sci. 52 (2010) 3702–3716. doi:10.1016/j.corsci.2010.07.021.
[36] J. Song, Q. Tang, Q. Feng, S. Ma, R. Setchi, Y. Liu, Q. Han, X. Fan, M. Zhang, Effect of heat treatment on microstructure and mechanical behaviours of 18Ni-300 maraging steel manufactured by selective laser melting, Opt. LASER Technol. 120 (2019). doi:10.1016/j.optlastec.2019.105725.
[37] C. Li, Z.Y. Liu, X.Y. Fang, Y.B. Guo, Residual Stress in Metal Additive Manufacturing, in: F. Fang (Ed.), 4TH CIRP Conf. Surf. Integr. (CSI 2018), 2018: pp. 348–353. doi:10.1016/j.procir.2018.05.039.
[38] G.M. Volpato, U. Tetzlaff, M.C. Fredel, A comprehensive literature review on laser powder bed fusion of Inconel superalloys, Addit. Manuf. 55 (2022). doi:10.1016/j.addma.2022.102871.
[39] M. Godec, S. Malej, D. Feizpour, C. Donik, M. Balazic, D. Klobcar, L. Pambaguian, M. Conradi, A. Kocijan, Hybrid additive manufacturing of Inconel 718 for future space applications, Mater. Charact. 172 (2021). doi:10.1016/j.matchar.2020.110842.
[40] Y.C. Sharma, R. Kumar, V. Vidyasagar, D. Bhardwaj, Low temperature plasma ion nitriding (PIN) of Inconel 690 alloy, Mater. Res. EXPRESS. 6 (2019). doi:10.1088/2053-1591/aaf1f3.
[41] X. Tao, J. Kavanagh, X. Li, H. Dong, A. Matthews, A. Leyland, An investigation of precipitation strengthened Inconel 718 superalloy after triode plasma nitriding, Surf. \& COATINGS Technol. 442 (2022). doi:10.1016/j.surfcoat.2022.128401.
[42] C. Donik, J. Kraner, A. Kocijan, I. Paulin, M. Godec, Evolution of the ε and γ phases in biodegradable Fe-Mn alloys produced using laser powder-bed fusion, Sci. Rep. 11 (2021). doi:10.1038/s41598-021-99042-0.
[43] P. Bajaj, A. Hariharan, A. Kini, P. Kürnsteiner, D. Raabe, E.A. Jägle, Steels in additive manufacturing: A review of their microstructure and properties, Mater. Sci. Eng. A. 772 (2020) 138633. doi:10.1016/j.msea.2019.138633.