DISPERSION OF AQUEOUS Y2O3 NANO-SUSPENSION AND FABRICATION OF TRANSPARENT CERAMICS BY COLLOIDAL PROCESSING

  • Jiao He School of Mechanical Engineering, Liaoning Petrochemical University, Fushun, 113001, P.R. China
  • Xin Zhang School of Mechanical Engineering, Liaoning Petrochemical University, Fushun, 113001, P.R. China
  • Jingbao Lian School of Mechanical Engineering, Liaoning Petrochemical University, Fushun, 113001, P.R. China
  • Xue Zhang School of Mechanical Engineering, Liaoning Petrochemical University, Fushun, 113001, P.R. China
  • Mingxia Lei School of Mechanical Engineering, Liaoning Petrochemical University, Fushun, 113001, P.R. China
Keywords: Y2O3, suspension, rheological behavior, transparent ceramics

Abstract

In the present study, transparent Y2O3 ceramics were successfully fabricated via colloidal processing, employing polyethylenimine (PEI) as an effective dispersant. The effect of PEI on nanosized Y2O3 suspensions was characterized by zeta-potential, adsorption behavior, rheological properties, and sedimentation test. The addition of PEI shifted the IEP of the Y2O3 powder towards a more alkaline pH range, and the adsorption of PEI on the Y2O3 surfaces gradually increased with the amount of PEI until reaching the saturation adsorption at 1.5 w/%. The PEI amount of 1.5 w/% was superior for the preparation of Y2O3 suspension as a result of a lower viscosity or sedimentation behavior. The viscosity of the suspension depended on the solids loading, increasing with the amount of powder. The optimal rheological behavior was achieved with 29 /% Y2O3 in the suspension, enabling the centrifugal slip casting of complex-shaped green bodies with a packing density of 43 %. Including an additional CIP treatment boosted the packing density of the green compacts, achieving above 50 %. Vacuum sintering the compacts at 1700 °C for 5 h yielded high-density ceramics exhibiting an in-line transmittance of approximately 73 % at a wavelength of 1100 nm.

References

1. H. M. Oh, Y. J. Park, H. N. Kim, J. W. Ko, H. K. Lee, Effect of milling ball size on the densification and optical properties of transparent Y2O3 ceramics, Ceram. Int., 47 (2021) 4, 4681-4687, doi: https://doi.org/10.1016/j.ceramint.2020.10.035
2. D. Permin, O. Postnikova, S. Balabanov, A. Belyaev, V. Koshkin, O. Timofeev, J. Li, Influence of SHS precursor composition on the properties of yttria powders and optical ceramics, Materials., 16 (2023) 1, 260, doi: https://doi.org/10.3390/ma16010260
3. A. Ratsimba, A. Zerrouki, N. Tessier-Doyen, B. Nait-Ali, D. André, P. Duport, A. Neveu, N. Tripathi, F. Francqu, G. Delaizir, Densification behaviour and three-dimensional printing of Y2O3 ceramic powder by selective laser sintering, Ceram. Int., 47 (2021) 6, 7465-7474, doi: https://doi.org/10.1016/j.ceramint.2020.11.087
4. L. Gan, Y. J. Park, M. J. Park, H. Kim, J. M. Kim, J. W. Ko, J. W. Lee, Facile fabrication of highly transparent yttria ceramics with fine microstructures by a hot-pressing method, J. Am. Ceram. Soc., 98 (2015) 7, 2002-2004, doi: https://doi.org/10.1111/jace.13648
5. X. R. Zhang, W. Z. Lu, G. F. Fan, X. H. Wang, Fabrication of well-dispersed Y2O3 nano-powders by poly (acrylic acid) low-temperature combustion, Adv. Powder Technol., 27 (2016) 1, 295-298, doi: https://doi.org/10.1016/j.apt.2015.11.004
6. F. F. Lange, Powder processing science and technology for increased reliability, J. Am. Ceram. Soc., 72 (1989) 1, 3-15, doi: https://doi.org/10.1111/j.1151-2916.1989.tb05945.x
7. L. L. Zhu, Y. J. Park, L. Gan, S. I. Go, H. N. Kim, J. M. Kim, J. W. Ko, Effects of the Zr concentration on transparent Y2O3 Ceramics fabricated by vacuum pre-sintering and a subsequent HIP treatment, J. Mater. Sci. Mater. Electron., 28 (2017), 7854-7861, doi: https://doi.org/10.1007/s10854-017-6482-9
8. J. A. Lewis, Colloidal processing of ceramics, J. Am. Ceram. Soc., 83 (2000) 10, 2341-2359, doi: https://doi.org/10.1111/j.1151-2916.2000.tb01560.x
9. X. Y. Zhang, W. L. Huo, S. Yan, Y. G. Chen, K. Gan, J. J. Liu, J. L. Yang, Innovative application of PVA hydrogel for the forming of porous Si3N4 ceramics via freeze-thaw technique, Ceram. Int., 44 (2018) 11, 13409-13413, doi: https://doi.org/10.1016/j.ceramint.2018.03.071
10. A. Shafeiey, M. H. Enayati, A. Al-Haji, The effect of slip casting parameters on the green density of MgAl2O4 spinel, Ceram. Int., 43 (2017) 8, 6069-6074, doi: https://doi.org/10.1016/j.ceramint.2017.01.151
11. F. Mohammadi, O. Mirzaee, M. Tajally, Influence of solid loading on the rheological, porosity distribution, optical and the microstructural properties of YAG transparent ceramic, Ceram. Int., 44 (2018) 11, 12098-12105, doi: https://doi.org/10.1016/j.ceramint.2018.03.230
12. V. M. Candelario, M. I. Nieto, F. Guiberteau, R. Moreno, A. L. Ortiz, Aqueous colloidal processing of SiC with Y3Al5O12 liquid-phase sintering additives, J. Eur. Ceram. Soc., 33 (2013) 10, 1685-1694, doi: https://doi.org/10.1016/j.jeurceramsoc.2013.01.030
13. G. V. Franks, C. Tallon, A. R. Studart, M. L. Sesso, S. Leo, Colloidal processing: enabling complex shaped ceramics with unique multiscale structures, J. Am. Ceram. Soc., 100 (2017) 2, 458-490, doi: https://doi.org/10.1111/jace.14705
14. I. Santacruz, M. J. Zayas-Rey, J. M. Porras-Vázquez, D. Marrero-López, E. R. Losilla, Colloidal processing and characterisation of lanthanum tungstate sheets, La5.5WO11.25, prepared by tape casting and reaction sintering, Ceram. Int., 41 (2015) 9, 11334-11340, doi: https://doi.org/10.1016/j.ceramint.2015.05.091
15. J. Mouzon, E. Glowacki, M. Oden, Comparison between slip-casting and uniaxial pressing for the fabrication of translucent yttria ceramics, J. Mater. Sci., 43 (2008) 2849-2856, doi: https://doi.org/10.1007/s10853-007-2261-y
16. Y. Sun, S. Z. Shimai, X. Peng, G. H. Zhoua, H. Kamiyac, S. W. Wang, Fabrication of transparent Y2O3 ceramics via aqueous gelcasting, Ceram. Int., 40 (2014) 6, 8841-8845, doi: https://doi.org/10.1016/j.ceramint.2014.01.106
17. Z. Fu, X. Li, Y. Ren, M. Zhang, X.T. Geng, Q. Zhu, J.G. Li, X.D. Sun, Coating Y2O3 nano-particles with ZrO2-additive via precipitation method for colloidal processing of highly transparent Y2O3 ceramics, J. Eur. Ceram. Soc., 39 (2019) 15, 4996-5004, doi: https://doi.org/10.1016/j.jeurceramsoc.2019.07.011
18. G. B. Granger, C. Guizard, Sintering behavior and optical properties of yttria, J. Am. Ceram. Soc., 90 (2007) 9, 2698-2702, doi: https://doi.org/10.1111/j.1551-2916.2007.01759.x
19. L. L. Jin, X. J. Mao, S. W. Wang, M. J. Dong, Optimization of the rheological properties of yttria suspensions, Ceram. Int., 35 (2009) 2, 925-927, doi: https://doi.org/10.1016/j.ceramint.2008.03.009
20. J. He, X. Li, Q. Zhu, C. Ma, M. Zhang, J. G. Lia, X. Sun, Dispersion of nano-sized yttria powder using triammonium citrate dispersant for the fabrication of transparent ceramics, Ceram. Int., 42 (2016) 8, 9737-9743, doi: https://doi.org/10.1016/j.ceramint.2016.03.064
21. C. Duran, Y. Jia, Y. J. Hotta, K. Sato, K. Watari, Colloidal processing, surface characterization, and sintering of nano ZrO2 powders, J. Mater. Res., 20 (2005), 1348-1355, doi: https://doi.org/10.1557/JMR.2005.0168
22. C. H. Chin, A. Muchta, C. H. Azhari, M. Razali, M. Aboras, Optimization of pH and dispersant amount of Y-TZP suspension for colloidal stability. Ceram. Int., 41 (2015)8, 9939-9946, doi: https://doi.org/10.1016/j.ceramint.2015.04.073
23. J. Sun, L. Gao, Dispersing SiC powder and improving its rheological behavior, J. Eur. Ceram. Soc., 21 (2001) 13, 2447-2451, doi: https://doi.org/10.1016/S0955-2219(01)00196-0
24. X. W. Zhu, T. Uchikoshi, T. S. Suzuki, Y. Sakka, Effect of Polyethylenimine on Hydrolysis and Dispersion Properties of Aqueous Si3N4 Suspensions, J. Am. Ceram. Soc., 90 (2007) 3, 797-804, doi: https://doi.org/10.1111/j.1551-2916.2007.01491.x
25. Y. Y. Xu, X. J. Mao, J. T. Fan, X. K. Li, M. H. Feng, B. X. Jiang, F. Lei, L. Zhang, Fabrication of transparent yttria ceramics by alcoholic slip-casting, Ceram. Int., 43 (2017) 12, 8839-8844, doi: https://doi.org/10.1016/j.ceramint.2017.04.017
26. D. Marani, B. R. Sudireddy, J. J. Bentzen, P. S.Jørgensen, R. Kiebach, Colloidal stabilization of cerium-gadolinium oxide (CGO) suspensions via rheology, J. Eur. Ceram. Soc., 35 (2015) 10, 2823-2832, doi: https://doi.org/10.1016/j.jeurceramsoc.2015.03.043
27. Z. Q. Sun, X. W. Zhu, M. S. Li, Y. C. Zhou, Y. Sakka, Hydrolysis and dispersion properties of aqueous Y2Si2O7 suspensions, J. Am. Ceram. Soc., 92 (2009) 1, 54-61, doi: https://doi.org/10.1111/j.1551-2916.2008.02860.x
28. A. Goswami, K. Ankit, N. Balashanmugam, A.M. Umarji, G. Madras, Optimization of rheological properties of photopolymerizable alumina suspensions for ceramic microstereolithography, Ceram. Int., 40 (2014) 2, 3655-3665, doi: https://doi.org/10.1016/j.ceramint.2013.09.059
Published
2024-06-06
How to Cite
1.
He J, Zhang X, Lian J, Zhang X, Lei M. DISPERSION OF AQUEOUS Y2O3 NANO-SUSPENSION AND FABRICATION OF TRANSPARENT CERAMICS BY COLLOIDAL PROCESSING. MatTech [Internet]. 2024Jun.6 [cited 2024Sep.7];58(3):413–420. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/1129