CHARACTERISATION OF NON-METALLIC INCLUSIONS IN Pb-Ca-Sn ALLOYS

  • Maja Vončina University of Ljubljana, Faculty of Natural Sciences and Engineering, Department for Materials and Metallurgy, Aškerčeva 12, 1000 Ljubljana, Slovenia
  • Jožef Medved Oddelek za materiale in metalurgijo, Naravoslovnotehniške fakultete, Univerze v Ljubljani, Slovenija
  • Gregor Šegel MPI-reciklaža metalurgija, plastika in inženiring d.o.o., Žerjav 79, 2393 Črna na Koroškem, Slovenia
  • Tilen Balaško University of Ljubljana, Faculty of Natural Sciences and Engineering, Department for Materials and Metallurgy, Aškerčeva 12, 1000 Ljubljana, Slovenia
Keywords: Pb-Ca-Sn alloys, non-metallic inclusions, differential scanning calorimetry

Abstract

Non-metallic inclusions in two Pb-Ca-Sn lead alloys used in the manufacture of lead-acid batteries were investigated and categorised. Samples of recycled lead alloys were analysed using scanning electron microscopy (SEM) in combination with energy dispersive X-ray spectroscopy (EDS). This technique enabled the analysis of the chemical composition of the alloys and the identification of non-metallic inclusions. Differential scanning calorimetry (DSC) confirmed the presence of non-metallic inclusions in two different recycled alloys. Non-metallic inclusions in lead alloys are detrimental, negatively impacting both the casting process and the mechanical and electrochemical properties of the alloys. Results indicate that oxide inclusions are predominant in Pb-Ca-Sn alloys. Non-metallic inclusions with stoichiometric compositions of PbO2, Pb2O3, Al2O3, and CaO were identified. Most of these inclusions were found near the surface of a sample, i.e., in the area most exposed to the atmosphere. The introduction of a protective atmosphere during the melting process could significantly reduce the occurrence of non-metallic inclusions.

References

1 M. T. Wall, M. Carl, J. Smith, Y. Ren, M. Raiford, T. Hesterberg, T. Ellis, M. L. Young, Novel characterization of lead-based micro-alloys for battery applications, Journal of Energy Storage, 44 (2021), 103373, doi:10.1016/j.est.2021.103373

2 T. Liu, K. Qiu, Removing antimony from waste lead storage batteries alloy by vacuum displacement reaction technology, Journal of Hazardous Materials, 347 (2018), 334–340, doi:10.1016/j.jhazmat. 2018.01.017

3 B. Chen, J. Cao, F. Ge, J. Zhang, Y. Huang, An innovative synergistic recycling route of spent lead paste and lead grid based on sodium nitrate reuse, Journal of Environmental Chemical Engineering, 10 (2022), 108454, doi:10.1016/j.jece.2022.108454

4 A. D. Ballantyne, J. P. Hallett, D. J. Riley, N. Shah, D. J. Payne, Lead acid battery recycling for the twenty-first century, Royal Society Open Science, 5 (2018), 171368, doi:10.1098/rsos.171368

5 J. Eaves-Rathert, K. Moyer-Vanderburgh, K. Wolfe, M. Zohair, C. L. Pint, Leveraging impurities in recycled lead anodes for sodium-ion batteries, Energy Storage Materials, 53 (2022), 552–558, doi:10.1016/j.ensm.2022.08.031

6 W. Zhang, J. Yang, X. Wua, Y. Hu, W. Yu, J. Wang, J. Dong, M. Li, S. Liang, J. Hu, R. V. Kumar, A critical review on secondary lead recycling technology and its prospect, Renewable and Sustainable Energy Reviews, 61 (2016), 108–122, doi:10.1016/j.rser.2016.03.046

7 T. W. Ellis, A. H. Mirza, The refining of secondary lead for use in advanced lead-acid batteries, Journal of Power Sources, 195 (2010), 4525–4529, doi:10.1016/j.jpowsour.2009.12.118

8 M. M. Burashnikova, I. V. Zotova, I. A. Kazarinov, Pb-Ca-Sn-Ba Grid Alloys for Valve-Regulated Lead Acid Batteries, Engineering, 5 (2013), 9–15, DOI: 10.4236/eng.2013.510A002

9 Y.-B. Zhou, C.-X. Yang, W.-F. Zhou, H.-T. Liu, Comparison of Pb–Sm–Sn and Pb–Ca–Sn alloys for the positive grids in a lead acid battery, Journal of Alloys and Compounds, 365 (2004), 108–111, doi:10.1016/S0925-8388(03)00649-2

10 E. Jullian, L. Albert, J. L. Caillerie, New lead alloys for high-performance lead–acid batteries, Journal of Power Sources, 116 (2003), 185–192, doi:10.1016/S0378-7753(02)00705-X

11 J. P Hilger, How to decrease overaging in Pb–Ca–Sn alloys?, Journal of Power Sources, 72 (1998), 184–188, doi:10.1016/S0378-¬7753 (97)02711-0

12 X. Yun, F.-Q. Zu, L.-J. Liu, R.-R. Shen, X.-F. Li, Z.-H. Chen, Abnormal solidification of Pb-Sn alloy induced by liquid structure transition, Kovove Materialy, 43 (2005), 432–439

13 Y. Cartigny, J. M. Fiorani, A. Maitre, M. Vilasi, Thermodynamic assessment on the Pb-Ca-Sn ternary system, Intermetallics, 11 (2003), 1205–1210, doi:10.1016/S0966-9795(03)00159-6

14 Z. J. Han, L. Liu, M. Lind, L. Holappa, Mechanism and kinetics of transformation of alumina inclusions by calcium treatment, Acta Metallurgica Sinica (English Letters), 19 (2006), 1–8, doi:10.1016/S1006-7191(06)60017-3

15 J.-L. Courouau, P. Trabuc, G. Laplanche, Ph. Deloffre, P. Taraud, M. Ollivier, R. Adriano, S. Trambaud, Impurities and oxygen control in lead alloys, Journal of Nuclear Materials, 301 (2002), 53–59, doi:10.1016/S0022-3115(01)00726-7

16 J. Burja, M. Koležnik, Š. Župerl, G. Klančnik, Nitrogen and Nitride Non-Metallic Inclusions in Steel, Materials and Technology, 53 (2019), 919–928, doi:10.17222/mit.2019.247

Published
2025-02-06
How to Cite
1.
Vončina M, Medved J, Šegel G, Balaško T. CHARACTERISATION OF NON-METALLIC INCLUSIONS IN Pb-Ca-Sn ALLOYS. MatTech [Internet]. 2025Feb.6 [cited 2025Mar.25];59(1):143–149. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/1119