FABRICATION AND PROPERTIES OF HIGH-CHROMIUM CAST IRON DISPERSED STEEL MATRIX COMPOSITE
Abstract
Composites with high-chromium cast iron (HCCI) dispersed in a steel matrix were prepared using the multilayer rolling-forming method. The macroscopic morphology, microstructure and tensile properties of the bimetal composites were analyzed. The experimental results showed that brittle HCCI layers were necked and broken into uneven blocks or granules after hot-rolling forming. The fractured HCCI was encased in carbon steel completely, and the two metals achieved good metallurgical bonding. The Fe, Cr, Mn and C elements were diffused at the interface. The tensile strength of the composite was better than that of the as-cast iron. During the process of tensile deformation, the composite displayed a complex crack propagation rather than a fracture caused directly by brittleness. The damage tolerance and energy absorption capacity of the bimetallic composite were improved with a decentralized structure.
References
2 Y. C. Li, P. Li, K. Wang, H. Z. Li, M. Y. Gong, W. P. Tong, Microstructure and Mechanical Properties of a Mo Alloyed high Chromium Cast Iron after Different Heat Treatments, Vacuum, 156 (2018), 59–67, doi:10.1016/j.vacuum.2018.07.013
3 J. Cui, L. Guo, H. Lu, D. Y. Li, Understanding Effects of Cr Content on the Slurry Erosion Behavior of high-Cr Cast Irons Through Local Property Mapping and Computational Analysis, Wear, 376 (2017), 587–594, doi:10.1016/j.wear.2016.12.031
4 Z. Y. Chen, H. G. Fu, F. Wang, N. B. Yuan, J. Lin, Effect of Si on Microstructure and Wear Resistance of Hypereutectic High-Chromium Cast Iron, J. Mater. Eng. Perform., 32 (2022), 5450–5465, doi:10.1007/s11665-022-07475-z
5 C. Vergne, C. Boher, R. Gras, C. Levaillant, Influence of oxides on friction in hot rolling: experimental investigations and tribological modelling, Wear, 92 (2006), 957–975, doi:10.1016/j.wear.2005.06.005
6 F. J Belzunce, A. Ziadi, C. Rodriguez, Structural integrity of hot strip mill rolling rolls. Eng. Fail. Anal. 11 (2004), 789–797, doi:10.1016/j.engfailanal.2003.10.004
7 E. Waleed, R. Rashad, E. Sayed, E. Saied, Influence of Vanadium and Boron Additions on the Microstructure, Fracture Toughness, and Abrasion Resistance of Martensite-Carbide Composite Cast Steel, Adv. Mate. Sci. Eng., 7 (2016), 1–8, doi:10.1155/2016/1203756
8 B. Y. Geng, R. F. Zhou, Y. K. L, Q. Q. Wang, Y. H. Jiang, The difference in effects of electric current pulses on inoculation of austenite and M7C3 carbides, Mater. Res. Express, 7 (2020), doi:10.1088/2053-1591/abb2d0
9 X. H. Zhi, J. D. Xing, H. G. Fu, B. Xiao, Effect of niobium on the as-cast microstructure of hypereutectic high chromium cast iron, Mater. Lett., 62 (2008), 857–860, doi:10.1016/j.matlet.2007.06.084
10 Y. Pei, R. B. Song, Y. C. Zhang, L. Huang, C. H. Cai, E. Wen, Z. Y. Zhao, P. Yu, S. Y. Quan, S. R. Su, C. Chen, The relationship between fracture mechanism and substructures of primary M7C3 under the hot compression process of self-healing hypereutectic high chromium cast iron, Mat. Sci. Eng. A., 779 (2020), 139150, doi:10.1016/j.msea.2020.139150
11 V. Javaheri, H. Rastegari, M. Naseri, Fabrication of plain carbon steel/high chromium white cast iron bimetal by a liquid–solid composite casting process, Int. J. Min. Met. Mat., 22 (2015), 950–955, doi:10.1007/s12613-015-1154-3
12 A. Jilleh, N. K. Babu, V. Thota, A. L. Anis, M. K. Harun, M. K. Talari, Microstructural and wear investigation of high chromium white cast iron hardfacing alloys deposited on carbon steel, J. Alloy. Compd., 857 (2020), 157472, doi:10.1016/j.jallcom.2020.157472
13 M. Eroglu, B. Kurt, Diffusion bonding between high chromium white iron and low carbon steel, Mater. Sci. Tech-lond., 23 (2007), 171–176, doi:10.1179/174328407X154202
14 G. L. Xie, H. Sheng, J. T. Han, J. Liu, Fabrication of high chromium cast iron/low carbon steel composite material by cast and hot rolling process, Mate. Design, 31 (2010), 3062–3066, doi:10.1016/j.matdes.2010.01.014
15 G. L. Xie, J. T. Han, J. Liu, Z. Y. Jiang, Texture, microstructure and microhardness evolution of a hot-rolled high chromium cast iron, Mat. Sci. Eng. A., 527 (2010), 6251–6254, doi:10.1016/j.msea.2010.06.036
16 R. Cao, Y. Ding, Y. J. Yan, X. B. Zhang, J. H. Chen, Effect of heat treatment on interface behavior of martensite/austenite multilayered composites by accumulative hot roll bonding, Compos. Interface, 26 (2019),1069–1085, doi:10.1080/09276440.2019.1583007
17 M. Huang, C. Xu, G. Fan, E. Maawad, W. M. Gan, L. Geng, F. X. Lin, G. Z. Tang, H. Wu, Y. Du, D. Y. Li, K. Miao, T. T. Zhang, X. S. Yang, Y. P. Xia, G. J. Cao, H. J. Kang, T. M. Wang, T. Q. Xia, H. L. Xie, Role of layered structure in ductility improvement of layered Ti/Al metal composite, Acta. Mater., 153 (2018), 235–249, doi:10.1016/j.actamat.2018.05.005
18 M. Azimi, M. R. Toroghinejad, M. Shamanian, L. A. I. Kestens, Grain and texture evolution in nano/ultrafine-grained bimetallic Al/Ni composite during accumulative roll bonding, J. Mater. Sci., 53 (2018), 12553–12569, doi:10.1007/s10853-018-2510-2
19 J. Park, M. C. Jo, T. Song, H. S. Kim, S. S. Sohn, S. Lee, Ultra-high strength and excellent ductility in multi-layer steel sheet of austenitic hadfield and martensitic hot-press-forming steels, Mat. Sci. Eng. A., 759 (2019), 320-328, doi:10.1016/j.msea.2019.05.046
20 M. S. Kim, K. S. Park, D. I. Kim, J. Y. Suh, J. H. Shim, K. T. Hong, S. H. Choi, Heterogeneities in the microstructure and mechanical properties of high-Cr martensitic stainless steel produced by repetitive hot roll bonding, Mat. Sci. Eng. A., 801 (2021), 140416, doi:10.1016/j.msea.2020.140416
21 X. Li, Y. H. Sun, Z. Q. Wang, F. C. Jiang, Fabrication, microstructure characterization and mechanical property of the Ti6Al4V-(NiTif/Mg3AlZn) laminate composite, J. Alloys Compd. 774 (2019), 656–667, doi:10.1016/j.jallcom.2018.10.074
22 B.X. Liu, L.J. Huang, B. Kaveendran, L. Geng, X. P. Cui, S. L. Wei, F. X. Yin, Tensile and bending behaviors and characteristics of laminated Ti-(TiBw/Ti) composites with different interface status, Compos. Part B-Eng., 108 (2017), 377–385, doi:10.1016/j.compositesb.2016.10.001