EFFECTS OF HOT-ROLLING PROCESSES ON THE FRACTURE BEHAVIORS AND MECHANICAL PROPERTIES OF 2009Al/SiCp METAL MATRIX COMPOSITES

  • Ze Wang College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
  • Zhiwen Liang College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
  • Qingxue Huang College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
  • Zixuan Li Zhejiang Key Laboratory of Parts Rolling Technology, Ningbo 315211, PR China
  • Xiaomiao Niu Taiyuan University of Techonology
Keywords: aluminum matrix composite, rolling process, microstructure evolution, fracture behavior, in-situ tensile test

Abstract

Defects such as pores and weak interfacial bonding in SiC-reinforced aluminum-matrix composites (AMCs) limit the reinforcement effect. The objective of this study is to control the microstructural defects and status of the Al/SiC interface in an 2009Al/SiCp composite using rolling processes. The influence of the rolling reduction rate on the microstructure and mechanical properties is investigated. The fracture behavior of the 2009Al/SiCp composite is observed through in-situ scanning-electron-microscopy tensile tests. The results demonstrate that an appropriate rolling reduction rate can effectively eliminate microstructural defects in the matrix and enhance the interfacial bonding strength of Al/SiC. Plastic deformation during the rolling processes expands the dislocation-strengthening regions near the Al/SiC interface. Consequently, mechanical loads can be more efficiently transferred from the aluminum matrices to SiC particles. In the as-sintered specimens, cracks primarily initiate at the Al/SiC interfaces during tensile tests. In contrast, cracks predominantly propagate from the SiC particles to Al matrices in the as-rolled specimens. This work provides a fundamental understanding of the dynamic changes in the microstructure and the resulting mechanical properties during hot rolling of SiC-reinforced AMCs.

References

1 I. N. Fridlyander, V. G. Sister, O. E. Grushko, V. V. Berstenev, L. M. Sheveleva & L. A. Ivanova, Aluminum Alloys: Promising Materials in the Automotive Industry, Metal Science and Heat Treatment., 44 (2002), 365-370, doi:10.1023/A:1021901715578
2 G Cueva, A Sinatora, WL Guesser, AP Tschiptschin, Wear resistance of cast irons used in brake disc rotors, Wear., 255 (2003), 1256-1260, doi:10.1016/S0043-1648(03)00146-7
3 X.Yongdong, Z.Yani, C.Laifei, Z.Litong, L.Jianjun, Z.Junzhan, Ceramics International., 33 (2007), 439-445, doi:10.1016/j.ceramint.2005.10.008
4 M. Ferraris, F. Gili, X. Lizarralde, A. Igartua, G. Mendoza, G. Blugan, L. Gorjan, V. Casalegno, SiC particle reinforced Al matrix composites brazed on aluminum body for lightweight wear resistant brakes, Ceramics International., 48 (2022), 10941-10951, doi:10.1016/j.ceramint.2021.12.313
5 Z.Y. Huang, B.L. Xiao, Z.Y. Ma, Correlation of hot deformation behaviors and microstructures of 17 vol% SiCp/Al-Cu-Mg composite fabricated by powder metallurgy, Materials Today Communications., 34 (2023), 105304, doi:10.1016/j.mtcomm.2022.105304
6 X. Wang, W. Liu, X. Hu, K. Wu, Microstructural modification and strength enhancement by SiC nanoparticles in AZ31 magnesium alloy during hot rolling, Materials Science and Engineering: A., 715 (2018), 49-61, doi:10.1016/j.msea.2017.12.075
7 Z. Huang, X. Zhang, B. Xiao, Z. Ma, Hot deformation mechanisms and microstructure evolution of SiCp/2014Al composite, Journal of Alloys and Compounds., 722 (2017), 145-157, doi:10.1016/j.jallcom.2017.06.065
8 G. Li, T. Xu, H. Wang, Y. Zhao, G. Chen, X. Kai, Microstructure study of hot rolling nanosized in-situ Al2O3 particle reinforced A356 matrix composites, Journal of Alloys and Compounds., 855 (2021), 157107, doi:10.1016/j.jallcom.2020.157107
9 J.-f. Nie, F. Wang, Y.-s. Li, Y.-f. Liu, X.-f. Liu, Y.-h. Zhao, Microstructure and mechanical properties of Al-TiB2/TiC in situ composites improved via hot rolling, Transactions of Nonferrous Metals Society of China., 27 (2017), 2548-2554, doi:10.1016/s1003-6326(17)60283-8
10 X.P. Li, C.Y. Liu, M.Z. Ma, R.P. Liu, Microstructures and mechanical properties of AA6061–SiC composites prepared through spark plasma sintering and hot rolling, Materials Science and Engineering: A., 650 (2016), 139-144, doi:10.1016/j.msea.2015.10.015
11 A. El-Sabbagh, M. Soliman, M. Taha, H. Palkowski, Hot rolling behaviour of stir-cast Al 6061 and Al 6082 alloys – SiC fine particulates reinforced composites, Journal of Materials Processing Technology., 212 (2012), 497-508, doi:10.1016/j.jmatprotec.2011.10.016
12 Q. Shen, Z. Yuan, H. Liu, X. Zhang, Q. Fu, Q. Wang, The damage mechanism of 17vol.%SiCp/Al composite under uniaxial tensile stress, Materials Science and Engineering: A., 782 (2020), 139274, doi:10.1016/j.msea.2020.139274
13 P. Jin, B. Xiao, Q. Wang, Z. Ma, Y. Liu, S. Li, Effect of Hot Extrusion on Interfacial Microstructure and Tensile Properties of SiCp/2009Al Composites Fabricated at Different Hot Pressing Temperatures, Journal of Materials Science & Technology., 27 (2011), 518-524, doi:10.1016/S1005-0302(11)60101-1
14 Xiaomiao Niu,Qingshan Ding,Haoran Zhang,Xiao Liu,Tao Wang, Research on fabricating Cu/stainless steel composite thin strips by two‑pass cold roll‑bonding with intermediate annealing, The International Journal of Advanced Manufacturing Technology., 130 (2024), 3323–3339, doi:10.1007/s00170-023-12779-y
Published
2024-08-19
How to Cite
1.
Wang Z, Liang Z, Huang Q, Li Z, Niu X. EFFECTS OF HOT-ROLLING PROCESSES ON THE FRACTURE BEHAVIORS AND MECHANICAL PROPERTIES OF 2009Al/SiCp METAL MATRIX COMPOSITES. MatTech [Internet]. 2024Aug.19 [cited 2025Jun.15];58(4):497–502. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/1101