SHORT-TERM EFFECTS OF SELECTIVE TRANSCUTANEOUS AURICULAR-NERVE STIMULATION MEASURED IN A SUBJECT WITH ANGINA PECTORIS

  • Janez Rozman Center for Implantable Technology and Sensors, ITIS d.o.o. https://orcid.org/0000-0002-9148-4551
  • Larisa Stojanovic Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Republic of Slovenia
  • Samo Ribarič Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Republic of Slovenia
Keywords: transcutaneous auricular-nerve stimulation, external ear, platinum electrodes, stimulating pulse, physiological measurements

Abstract

We have measured the short-term effects of selective, transcutaneous, auricular-nerve stimulation (tANS) on the heart function, respiratory function, thermal function and galvanic skin response in a patient with angina pectoris with respect to four predefined sites on the left and right cymba concae (CC). The tANS involved the use of a train of monopolar, current, biphasic pulses composed of rectangular cathodic ic and anodic phases ia and globule-like platinum stimulating electrodes. The parameters of the stimulating pulses were as follows: frequency f = 45.5 Hz, cathodic phase width tc = 200 µs, anodic phase width ta = 200 µs, interphase delay d =180 µs, pulse-train duration 2.0 s and time gap between pulse trains 1.0 s. The results show that tANS at predefined sites on the CC produce measurable effects on the assessed vital functions. In conclusion, tANS witbih an increased number of channels, has the potential to be used in the treatment of certain disorders.

References

1. Amar, A. P., Levy, M. L., Liu, C. Y. & Apuzzo. M. L. J. Vagus Nerve Stimulation. in (eds. Krames, E. S., Peckham, P. H. & Rezai, A. R.) Neuromodulation 625–637 (Academic Press, 2009).

2. De Ferrari, G. M. & Schwartz, P. J. Vagus nerve stimulation: from pre-clinical to clinical application: challenges and future directions. Heart Fail Rev. 16, 195–203, https://doi.org/10.1007/s10741-010-9216-0 (2011).

3. Howland, R. H. Vagus Nerve Stimulation. Curr. Behav. Neurosci. Rep. 1(2), 64–73 (2014).

4. McAllen, R. M. & Spyer, K. M. Two types of vagal preganglionic motoneurones projecting to the heart and lungs. J. Physiol. 282, 353–364, https://doi.org/10.1113/jphysiol.1978.sp012468 (1978).

5. Ellrich, J. Transcutaneous vagus nerve stimulation. Eur. Neurol. Rev. 6, 254–256, http://doi.org/10.17925/ENR.2011.06.04.254 (2011)

6. Badran, B. W. et al. Laboratory Administration of Transcutaneous Auricular Vagus Nerve Stimulation (taVNS): Technique, Targeting, and Considerations. J. Vis. Exp. 143, e58984, https://doi.org/10.3791/58984 (2019).

7. Peuker, E. T. & Filler, T. J. The Nerve Supply of the Human Auricle. Clinical Anatomy 15, 35–37, https://doi.org/10.1002/ca.1089 (2002).

8. Nogier P, & Nogier R. The man in the ear (Maisonneuve, 1985).

9. He, W. et al. Auricular Acupuncture and Vagal Regulation. Evid. Based Complement. Alternat. Med. 2012, 786839, https://doi.org/10.1155/2012/786839 (2012).

10. Dietrich, S. et al. A novel transcutaneous vagus nerve stimulation leads to brainstem and cerebral activations measured by functional MRI. Biomedizinische Technik 53(3), 104–111, https://doi.org/10.1515/BMT.2008.022 (2008).


11. Butt, M. F., Albusoda, A., Farmer, A. D. & Aziz, Q. The anatomical basis for transcutaneous auricular vagus nerve stimulation. J. Anat. https://doi.org/10.1111/joa.13122 (2019).

12. Bach, A. J. E., Stewart, I. B., Disher, A. E. & Costello, J. T. A comparison between conductive and infrared devices for measuring mean skin temperature at rest, during exercise in the heat, and recovery. PLoS ONE 10, e0117907, https://doi.org/10.1371/journal.pone.0117907 (2015).

13. Webb, R. C., et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 12, 938–944, https://doi.org/10.1038/nmat3755 (2013).

14. Bernard, V., Staffa, E., Mornstein, V. & Bourek, A. Infrared camera assessment of skin surface temperature - effect of emissivity. Phys. Medica 29, 583–591, https://doi.org/10.1016/j.ejmp.2012.09.003 (2013).

15. MacRae, B. A., Annaheim, S., Spengler, C. M. & Rossi, R. M. Skin Temperature Measurement Using Contact Thermometry: A Systematic Review of Setup Variables and Their Effects on Measured Values. Front. Physiol. https://doi.org/10.3389/fphys.2018.00029 (2018).

16. Yakovlev, V. V. & Utekhin, B. A. Errors in skin temperature measurements due to changes in evaporation under the sensor. Bull. Exp. Biol. Med. 60, 1210–1212 (1965).

17. Hapke, B. Theory of Reflectance and Emittance Spectroscopy (Cambridge University Press, 2012). https://doi.org/10.1017/CBO9781139025683

18. Medical News Today, https://www.medicalnewstoday.com/articles/323819 (2020).

19. Lenhardt, R. & Sessler, D. I. Estimation of mean-body temperature from mean-skin and core temperature. Anesthesiology 105, 1117–1121, https://doi.org/10.1097/00000542-200612000-00011 (2006).

20. O'Rahilly, R., Müller, F., Carpenter, S. & Swenson, R. Chapter 50-The neck, Thyroid glands. in Basic human anatomy (ed. Swenson, R.) (Dartmouth Medical School, 2008). https://www.dartmouth.edu/~humananatomy/part_8/chapter_50.html

21. Leung, A. Thyroid Emergencies. J. Infus. Nurs. 39(5), 281–286, https://doi.org/10.1097/NAN.0000000000000186 (2016).

22. Whiteman, H. How body temperature is affected by thyroid hormone. Medical News Today https://www.medicalnewstoday.com/articles/266255.php (2013).

23. Aweda, M. A., Adeyomoye A. O. & Abe G. A. Thermographic analysis of thyroid diseases at the Lagos university teaching hospital, Nigeria. Adv. Appl. Sci. Res. 3(4), 2027–2032 (2012).

24. Cunliffe, W. J. The innervation of the thyroid gland. Acta Anat. 46, 135-141 (1961).

25. Hotta, H., Onda, A., Suzuki, H., Milliken, P. & Sridhar, A. Modulation of Calcitonin, Parathyroid Hormone, and Thyroid Hormone Secretion by Electrical Stimulation of Sympathetic and Parasympathetic Nerves in Anesthetized Rats. Front. Neurosci. 11, 375, https://doi.org/10.3389/fnins.2017.00375 (2017).

26. Ishii, J., Shizume, K. & Okinaka, S. Effect of stimulation of the vagus nerve on the thyroidal release of 131i-labeled hormones. Endocrinology 82, 7–16, https://doi.org/doi: 10.1210/endo-82-1-7 (1968).

27. Huang, H. & Liang, S. Acupuncture at otoacupoint heart for treatment of vascular hypertension. Journal of Traditional Chinese Medicine 12(2), 133–136 (1992).

28. Jubran, A. Pulse oximetry. Crit Care 19, 272, https://doi.org/10.1186/s13054-015-0984-8 (2015).

29. Eccles, R. Nasal Airflow in Health and Disease. Acta Oto-Laryngologica 120(5), 580-595, https://doi.org/10.1080/000164800750000388 (2000).

30. Borojeni, A. A. T. et al. Normative ranges of nasal airflow variables in healthy adults. Int. J. CARS 1–12 https://doi.org/10.1007/s11548-019-02023-y (2019).

31. Corey, J. & Pallanch, J. Evaluation of Nasal Breathing Function with Objective Airway Testing, Cummings Otolaryngology-Head and Neck Surgery, 640-656, https://doi.org/10.1016/B978-0-323-05283-2.00043-4, (2010).

32. Merrill, D. R. The Electrochemistry of Charge Injection at the Electrode/Tissue Interface. in Implantable Neural Prostheses 2, Biological and Medical Physics, Biomedical Engineering (eds. Zhou D. & Greenbaum E.) 85–138 (Springer, New York 2010). https://doi.org/10.1007/978-0-387-98120-8_4

33. Tyler, C. J. The effect of skin thermistor fixation method on weighted mean skin temperature. Physiol. Meas. 32(10), 1541–1547, https://doi.org/10.1088/0967-3334/32/10/003 (2011).

34. Henry, T. R. Therapeutic mechanisms of vagus nerve stimulation. Neurology 59, S3–S14, https://doi.org/10.1212/wnl.59.6_suppl_4.s3 (2002).

35. Badran, B. W. et al. Tragus or cymba conchae? Investigating the anatomical foundation of transcutaneous auricular vagus nerve stimulation (taVNS). Brain Stimul. 11(4):947-948, https://doi.org/10.1016/j.brs.2018.06.003 (2018).

36. Badran, B. W. et al. Transcutaneous auricular vagus nerve stimulation (taVNS) for improving oromotor function in newborns. Brain Stimul. 11(5):1198-1200, https://doi.org/10.1016/j.brs.2018.06.009 (2018).

37. Borovikova, L. V. et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 405(6785), 458-62, https://doi.org/10.1038/35013070 (2000).

38. Ulloa, L. The vagus nerve and the nicotinic anti-inflammatory pathway. Nature Reviews Drug Discovery 4(8), 673-684, https://doi.org/10.1038/nrd1797 (2005).

39. Badran, B. W. et al. Short trains of transcutaneous auricular vagus nerve stimulation (taVNS) have parameter-specific effects on heart rate. Brain Stimul. 11(4), 699-708, https://doi.org/10.1016/j.brs.2018.04.004 (2018).

40. Clancy, J. A. et al. Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain Stimul. 7(6), 871-7, https://doi.org/10.1016/j.brs.2014.07.031 (2014).

41. Frostegård, J. Atherosclerosis in Patients With Autoimmune Disorders. Arteriosclerosis, Thrombosis, and Vascular Biology 25, 1776–1785, https://doi.org/10.1161/01.ATV.0000174800.78362.ec (2005).

42. Frangos, E., Ellrich, J. & Komisaruk, B. R. Non-invasive Access to the Vagus Nerve Central Projections via Electrical Stimulation of the External Ear: fMRI Evidence in Humans. Brain Stimul. 8(3), 624–636, https://doi.org/10.1016/j.brs.2014.11.018 (2015).

43. Kuhn, A., Keller, T., Lawrence, M. & Morari, M. A model for transcutaneous current stimulation: simulations and experiments. Med. Biol. Eng. Comput. 47, 279–289, https://doi.org/10.1007/s11517-008-0422-z (2009).

44. Peterson, E. J., Izad, O. & Tyler, D. J. Predicting myelinated axon activation using spatial characteristics of the extracellular field. J. Neural Eng. 8(4), 046030, https://doi.org/10.1088/1741-2560/8/4/046030 (2011).

45. Chizmadzhev, Y. A. et al. Electrical properties of skin at moderate voltages: contribution of appendageal macropores, Biophys. J. 74(2 Pt 1), 843–56, https://doi.org/10.1016/S0006-3495(98)74008-1 (1998).

46. Elias, P. M. Epidermal lipids, barrier function, and desquamation, J. Invest. Dermatol. 80(1 Suppl), 44s–9s, https://doi.org/10.1038/jid.1983.12 (1983).

47. Lahiri. B. B, Bagavathiappan, S., Jayakumar, T. & Philip, J. Medical applications of infrared thermography: A review. Infrared Phys. Technol. 55(4), 221-235, https://doi.org/10.1016/j.infrared.2012.03.007 (2012).

48. Fernández-Cuevas, I. et al. Classification of factors influencing the use of infrared thermography in humans: A review. Infrared Phys. Technol. 71, 28-55, https://doi.org/10.1016/j.infrared.2015.02.007Get rights and content (2015).


49. Asadian, S., Khatony, A., Moradi, G., Abdi, A. & Rezaei, M. Accuracy and precision of four common peripheral temperature measurement methods in intensive care patients. Med. Devices (Auckl) 9, 301–308, https://doi.org/10.2147/MDER.S109904 (2016).

50. Filingeri, D., Fournet, D., Hodder, S. & Havenith, G. Tactile cues significantly modulate the perception of sweat-induced skin wetness independently of the level of physical skin wetness. J. Neurophysiol. 113(10), 3462–3473, https://doi.org/10.1152/jn.00141.2015 (2015).

51. Rozman, J. et al. Heart function influenced by selective mid-cervical left vagus nerve stimulation in a human case study. Hypertension research 32(11), 1041-1043, https://doi.org/10.1038/hr.2009.140 (2009).
Published
2021-05-31
How to Cite
1.
RozmanJ, Stojanovic L, Ribarič S. SHORT-TERM EFFECTS OF SELECTIVE TRANSCUTANEOUS AURICULAR-NERVE STIMULATION MEASURED IN A SUBJECT WITH ANGINA PECTORIS. MatTech [Internet]. 2021May31 [cited 2025Jan.19];55(3):387–399. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/11

Most read articles by the same author(s)