EVALUATION OF THE BEHAVIOR OF WELDED STRUCTURES UNDER LOW-CYCLE FATIGUE LOADING

  • Srđan Bulatović Institute for Materials Testing – IMS, Bulevar vojvode Mišića 43, Belgrade, Serbia
  • Vujadin Aleksić Institute for Materials Testing – IMS, Bulevar vojvode Mišića 43, Belgrade, Serbia
  • Bojana Zečević Institute for Materials Testing – IMS, Bulevar vojvode Mišića 43, Belgrade, Serbia
  • Mladomir Milutinović University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6, Novi Sad, Serbia
Keywords: low-cycle fatigue (LCF), stress-strain response, Ramberg-Osgood relation

Abstract

Welded structures are exposed to constant variable loads during their exploitation in real conditions. A variable load affects the integrity and life of a welded structure; therefore, it is of practical importance to understand fatigue behavior, especially the behavior of welded structures under the impact of low-cycle fatigue. The effect of low-cycle fatigue is very prevalent in structures and an assessment of cyclic loading of a material entails modifications of its properties and characteristics related to the dependence of stress and strain. Since the stress-strain response during low-cycle fatigue is in the form of a hysteresis loop, this paper presents the application of one of the two most common relations for testing resistance to low-cycle fatigue, the Ramberg-Osgood relation, which is used to evaluate the behavior of a material, in this case a high-strength low-alloy steel welded joint.

References

1. M.A. Ahmed, Primena parametara mehanike loma za ocenu ponašanja zavarenog spoja pri zamornom opterećenju, PhD dissertation, Tehnološko-metalurški fakultet Univerziteta u Beogradu (1987).
2. J. Legat, Prilog proučavanju razvoja prsline pri zamornom opterećenju zavarenih spojeva konstrukcijskih ĉelika, PhD dissertation, Tehnološko-metalurški fakultet Univerziteta u Beogradu (1988).
3. B. Anmol, W. Reeta, Process Parameters Optimization for Maximizing Tensile Strength in Friction Stir-Welded Carbon Steel, Strojniški vestnik - Journal of Mechanical Engineering, 67 (2021), 6, 311-321, DOI:10.5545/sv-jme.2021.7203
4. P.S. Patwardhana, R.A. Nalavdea, D. Kujawski, An Estimation of Ramberg-Osgood Constants for Materials with and without Luder’s Strain Using Yield and Ultimate Strengths, Procedia Structural Integrity, 17 (2019), 750–757, DOI:10.1016/j.prostr.2019.08.100.
5. T. Sireteanu, A. Mitu, M. Giuclea, O. Solomon, D. Stefanov, Analytical method for fitting the Ramberg-Osgood model to given hysteresis loops, Proceedings of the Romanian academy, 15 (2014), 35-42.
6. L. Kaishang, J. Peng, Mechanical Behavior of 316L Stainless Steel after Strain Hardening, MATEC Web of Conferences. vol. 114 (2017), 1-6, DOI:10.1051/matecconf/201711402003.
7. W. Yixun. Rt al., Cyclic elastoplasticity-based life assessment of fatigue crack initiation and subsequent propagation in rib-to-deck welded joints, International Journal of Fatigue, 173 (2023), DOI:10.1016/j.ijfatigue.2023.107679.
8. S. Mrozinski, G. Golanski, Low cycle fatigue of GX12CrMoVNbN9-1 cast steel at elevated temperature, Journal of Achievements in Materials and Manufacturing Engineering, 49 (2023) 1, 7-16.
9. S. Glodež, M. Knez, J. Kramberger, Fatigue behaviour of high strength steel S1100Q. Advanced Engineering, 2 (2007), 143-152.
10. J. Tartaglia, Comparasion of monotonic and cyclic properties of ductile irons in the afs/doe strain-life fatigue database for cast iron, International Journal of Metalcasting, 6 (2012) 2, 7-22, DOI:10.1007/BF03355524.
11. M. Knez, J. Kramberger, S. Glodež, Determination of the Low-Cycle Fatigue Parameters of S1100Q High Strength Steel, Strojniški vestnik-Journal of Mechanical Engineering, 53 (2007) 4, 253-264.
12. H.S.Mateiu, N. Farbas, T. Fleser, R. Pascu, Researches concerning damage assessment of heat resistant steels used for power plant components. Structural Integrity and Life, 3 (2003) 2, 51-64.
13. S. Posavljak, Naponosko-deformaciona analiza i zamor materijala rotacionih diskova turbomlaznih motora, Msc Thesis (1999), Mašinski fakultet Univerziteta u Beogradu.
14. S. Bulatović, V. Aleksić, Lj. Milović, B. Zečević, Аn analysis of impact testing of high strength low-alloy steels used in ship construction, Brodogradnja, 72 (2021) 3, 1-11, DOI:10.21278/brod72301.
15. J.F. Martin, Cyclic Stress-Strain Behaviour and Fatigue Resistance of Two Structural Steels, (1973), College of Engineering, University of Illinois, Illinois.
16. R. Stephens, A. Fatemi, R. Stephens, H. Fuchs, Cyclic deformation and the strain-life approach, Metal Fatigue in Engineering. New York: John Willey&Sons Inc., (2001), 93-121.
17. R. Hales, S.R. Holdsworth, M.P. O'Donnell, I.J. Perrin, R.P.A. Skelton, Code of practice for the determination of cyclic stress-strain data, Materials at High Temperature, 19 (2002) 4, 165-185, DOI:10.3184/096034002783640332.
18. A. De Jesus, A. Ribeiro, A. Fernandes, Low and high cycle fatigue and cyclic elastoplastic behavior of the P355NL1 steel, Journal of Pressure Vessel Technology, Transactions of the ASME, 128 (2006) 3, 298-304, DOI:10.1115/1.2217961.
19. L.P. Borrego, L.M. Abreu, J.M. Costa, J.M. Ferreira, Analysis of low cycle fatigue in AlMgSi aluminium alloys. Engineering failure Analysis, 11 (2004) 5, 715-725, DOI:10.1016/j.engfailanal.2003.09.003.
20. M. Balda, Identification of low cycle fatigue parameters, Applied and Computional Mechanics, 3 (2009), 259-266.
21. S.C. Roy, S. Goyal, R. Sandhya, S.K. Ray, Analysis of hysteresis loops of 316L(N) stainless steel under low cycle fatigue loading conditions, Procedia Engineering by Elsevier, 55 (2013), 165-170, DOI:10.1016/j.proeng.2013.03.237.
22. M. Petrenec, H. Tesarova, P. Beran, M. Šmid, P. Roupcova, Comparison of low cycle fatigue of ductile cast irons with different matrix alloyed with nickel. Procedia Engineering by Elsevier, 2 (2010) 1, 2307-2316., DOI:10.1016/j.proeng.2010.03.247.
23. A. De Jesus, A. Ribeiro, A. Fernandes, Low and high cycle fatigue and cyclic elasto-plastic behavior of the P355NL1 steel, Journal of Pressure Vessel Technology-Transactions of the ASME, 128 (2006) 3, 298-304, DOI:10.1115/1.2217961.
24. W.Ramberg, W.R. Osgood, Description of Stress-Strain Curves by Three Parameters. Technical Report No. 902, National Advisory Committee for Aeronautics, (1943).
25. Z.Shilun, C.Chaohe, F.Tianhui, J. Yong, S. Yijun, Fatigue assessment of crack growth based on failure assessment diagrams for a semi-submersible platform, Brodogradnja, 70 (2019) 1, 11-24, DOI:10.21278/brod70102.
26. S. Beretta, A. Bernasconi, M. Carboni, Fatigue assessment of root failures in HSLA steel welded joints: A comparison among local approaches, International Journal of Fatigue, 31 (2009) 1, 102-110, DOI:10.1016/j.ijfatigue.2008.05.027.
27. J.A. Bannantine, J. Comer, J. Handrock, Fundamentals of Metals Fatigue Analysis, (1990), Prentice-Hall, Englewood Cliffs, New Jersey.
28. ISO 12106, Metallic materials-fatigue testing-axial-strain-controlled method, (2003), Geneva: ISO, Switzerland.
29. ASTM E606-04, Standard practice for strain-controlled fatigue testing, (2004), West Conshohocken: ASTM, Pennsylvania, USA.
Published
2024-06-03
How to Cite
1.
Bulatović S, Aleksić V, Zečević B, Milutinović M. EVALUATION OF THE BEHAVIOR OF WELDED STRUCTURES UNDER LOW-CYCLE FATIGUE LOADING. MatTech [Internet]. 2024Jun.3 [cited 2024Sep.7];58(3):321–327. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/1094