• Sedat Aras Bursa Uludag University, Automotive Engineering Department, Bursa 16059, Turkey
  • Rukiye Ertan Bursa Uludag University, Automotive Engineering Department, Bursa 16059, Turkey
Keywords: stainless steel, resistance spot welding, corrosion resistance, mechanical properties, welding parameter, nerjavno jeklo, uporovno točkovno varjenje, odpornost proti koroziji, mehanske lastnosti, parametri varjenja


Investigating the best welding parameters for resistance spot welding joints between AISI 430 and AISI 301 stainless steels was the primary focus of this study. This research involved welding samples of these stainless steel types using various welding parameters. Ferritic stainless steel (AISI 430) and austenitic stainless steel (AISI 301) were subjected to resistance spot welding, and different welding conditions were applied to produce a range of samples. The study specifically analyzed the influence of the welding current (2.5, 3.1 and 3.7) kA and welding time (40, 70 and 100) ms on the joining capability of these stainless steels. To determine the best welding parameters, microhardness measurements and tensile-shear tests were performed on the welded materials. The results indicated that increasing the welding current and welding time led to an increase in the tensile load. The maximum tensile-shear load 2036 N was observed at 3.7 kA and 100 ms. However, after a salt spray test (48 and 96) h, a serious decrease in the tensile load from 2036 N to 750 was observed at the high current 3.7 kA and time (70 and 100) ms. At 3.1 kA and 70 ms before and after the salt test, its value remained relatively constant, and the corrosion resistance of the weld joint was at the best level. The microhardness of the heat-affected zone increased, reaching its maximum point (for 3.1 kA and 70 ms: 347.3 HV and for 3.1 kA 100 ms: 369 HV) in the fusion zone. Moreover, the increase in the welding time and current was associated with an increase in the nugget size. The maximum nugget size was 3.61 mm at 3.7 kA and 100 ms.


1 D. Ozyurek, An effect of weld current and weld atmosphere on the resistance spot weldability of 304L austenitic stainless steel, Mater. Design, 29 (2008) 3, 597–603, doi:10.1016/j.matdes.2007.03.008

2 A. E. Reiter, B. Brunner, M. Ante, J. Rechberger, Investigation of several PVD coatings for blind hole tapping in austenitic stainless steel, Surf. Coat. Tech., 200 (2006) 18–19, 5532–5541, doi:10.1016/j.surfcoat.2005.07.100

3 H. B Carry, Modern Welding Technology, 2nd Edition, American Welding Society, Prentice Hall 1981

4 Y. Zhanga, J. Guob, Y. Li, Z. Luo, X. Zhang, A comparative study between the mechanical and microstructural properties of resistance spot welding joints among ferritic AISI 430 and austenitic AISI 304 stainless steel, J. Mater. Res. Tech., 9 (2020) 1, 574–583, doi:10.1016/j.jmrt.2019.10.086

5 J. Verma, R. V. Taiwade, Effect of welding processes and conditions on the microstructure, mechanical properties and corrosion resistance of duplex stainless steel weldments—A review, J. Manuf. Process., 25 (2017), 134–152, doi:10.1016/j.jmapro.2016.11.003

6 D. J. Kotecki, T. A. Siewert, WRC-1992 Constitution Diagram for Stainless Steel Weld Metals: A modification of the WRC-1988 Diagram, Welding Research Supplement, 71 (1992) 5, 171–178

7 M. C. Balmforth, J. C. Lippold, A New Ferritic-Martensitic Stainless Steel Constitution Diagram, Supplement to The Welding Journal, 79 (2000) 12, 339–345

8 C. Wang, Y. Yu, J. Yu, Y. Zhang, Y. Zhao, Q. Yuan, Microstructure evolution and corrosion behavior of dissimilar 304/430 stainless steel welded joints, J. Manuf. Process., 50 (2020), 183–191, doi:10.1016/j.jmapro.2019.12.015

9 M. Sireesha, V. Shankar, Microstructural Features of Dissimilar Welds between 316LN Austenitic Stainless Steel and Alloy 800, Mater. Sci. Eng., 292 (2000) 1, 74–82, doi:10.1016/S0921-¬5093(00)00969-2

10 M. S. Khorrami, M. A. Mostafaei, H. Pouraliakbar, A. H. Kokabi, Study on Microstructure and Mechanical Characteristics of Low Carbon Steel and Ferritic Stainless Steel Joints, Mater. Sci. Eng., 608 (2014), 35–45, doi:10.1016/j.msea.2014.04.065

11 G. Senthilkumar, V. Vinodkumar, T. Mayavan, G. Rathinasabapathi, A. G. David, Optimization of process parameters for a solid-¬state-¬welded AISI 430 steel joint with the GRG reinforced response surface methodology, Mater. Tech., 57 (2023) 5, 485–494, doi:10.17222/mit.2023.873

12 S. B. Jamaludin, M. Hisyam, Study of spot welding of austenitic stainless steel type 304, J. Appl. Sci. Res., 3 (2007) 11, 1494–1499, doi:10.13140/2.1.4207.0400

13 M. Vural, A. Akkus, On the Resistance Spot Weldability of Galvanized Interstitial Free Steel Sheets with Austenitic Stainless Steel Sheets, J. Mat. Process. Tech., 153–154 (2004), 1-6, doi:10.1016/ j.jmatprotec.2004.04.063

14 E. Bayraktar, D. Kaplan, M. Grumbach, Application of impact tensile testing to spot welded sheets, J. Mat. Process. Tech., 153–154 (2004), 80–86, doi:10.1016/j.jmatprotec.2004.04.020

15 M. H. Bina, M. Jamali, M. Shamanian, H. Sabet, Effect of Welding Time in the Resistance Spot Welded Dissimilar Stainless Steels, Trans. Indian. Inst. Met., 68 (2015) 2, 247–255, doi:10.1007/ s12666-014-0452-1

16 M. Alizadeh-Sh, S. P. H. Marashi, M. Pouranvari, Resistance spot welding of AISI 430 ferritic stainless steel: Phase transformations and mechanical properties, Mater. Design, 56 (2014), 258–263, doi:10.1016/j.matdes.2013.11.022

17 S. Aslanlar, A. Ogur, U. Ozsarac, E. Ilhan, Welding time effect on mechanical properties of automotive sheets in electrical resistance spot welding, Mater. Design, 29 (2008) 7, 1427–1431, doi:10.1016/ j.matdes.2007.09.004

18 B. Kocabekir, R. Kacar, S. Gunduz, F. Hayat, An effect of heat input, weld atmosphere and weld cooling conditions on the resistance spot weldability of 316L austenitic stainless steel, J. Mater. Proc. Tech., 195 (2008) 1, 327–335, doi:10.1016/j.jmatprotec.2007.05.026

19 S. M. Hassoni, O. S. Barrak, M. I. Ismail, S. K. Hussein, Effect of Welding Parameters of Resistance Spot Welding on Mechanical Properties and Corrosion Resistance of 316L, Mat. Res., 25 (2022) 2, doi:10.1590/1980-5373-mr-2021-0117

20 S. P. Ambade, A. Sharma, A. P. Patil, Y. M. Puri, Effect of welding processes and heat input on corrosion behaviour of Ferritic stainless steel 409M, Mat. Proc., 41 (2021) 5, 1018–1023, doi:10.1016/ j.matpr.2020.06.251

21 H. G. Mohammed, T. L. Ginta, M. Mustapha, The investigation of microstructure and mechanical properties of resistance spot welded AISI 316L austenitic stainless steel, Mat. Proc., 46 (2021) 4, 1640–1644, doi:10.1016/j.matpr.2020.07.258

How to Cite
Aras S, Ertan R. STUDYING THE STRENGTH OF DISSIMILAR JOINTS OF AISI 430 AND 301 STAINLESS STEEL WELDED AT DIFFERENT WELDING PARAMETERS. MatTech [Internet]. 2024Apr.2 [cited 2024May18];58(2):121–127. Available from: