EFFECT OF LONG-TERM THERMAL AGING AT 475 °C ON EMBRITTLEMENT OF Fe-32Cr-4Ni-4Cu MODEL ALLOY

  • Xiaoming Du School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China1School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
  • Zhendong Sun School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
  • Xue Ma School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
  • Ming Ma School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
  • Zhijun Wang China Institute of Atomic Energy, Beijing 102413, China
  • Tianfu Li China Institute of Atomic Energy, Beijing 102413, China
Keywords: model alloy, thermal aging, spinodal decomposition, Cu-rich precipitate, fracture mechanism

Abstract

The microstructure evolution and mechanical properties of a Fe-32Cr-4Ni-4Cu model alloy after long-term thermal aging at 475 °C was investigated in this study. The spinodal decomposition of the model alloy during thermal aging and the crystal structure evolution of Cu-rich precipitates were observed and analyzed using high-resolution transmission electron microscopy (TEM). It was revealed that after long-term thermal aging, the crystal structure of the precipitated Cu-rich phases in the Fe-32Cr-4Ni-4Cu model alloy transformed from a BCC structure to a multi-twin 9R or 2H structure, ultimately transforming into a stable FCC structure. During long-term thermal aging at 475 °C, the precipitated Cu-rich phase and the Cr-rich ’-phase produced by spinodal decomposition cause an increase in the hardness of the model alloy. The hardness of the model alloy in the early stage of thermal aging greatly depends on the Cu-rich precipitates. After continuous thermal aging for 1000 h, the hardness of the alloy depends on the Cr-rich ’-phase. The results of an oscillographic impact test indicate that the fracture mechanism of the model alloy after thermal aging at 475 °C is brittle fracture, which is mainly influenced by the precipitation of Cu-rich phases during the thermal aging process.

References

1 J. Wang, H. Zou, X. Y. Wu, Effect of long-term aging at 350 ℃ on dynamic fracture toughness of 17-4PH stainless steel, Atomic Energy Science and Technology, 02 (2006): 243-248, doi:10.1300/J064v28n01_10.
2 J. Wang, Performance study of 17-4PH stainless steel for nuclear reactor, Sichuan University, 2007, doi:10.7666/d.y1213057.
3 H. Zou, J. Wang, C. Li, R. L. Zuo, Transmission electron microscope observation of the long-term aging structure evolution of 17-4PH stainless steel at 350 ℃, Nuclear Power Engineering, 04 (2005): 397-401+409, doi: 10.1016/j.nucengdes.2006.03.017.
4 J. Wang, H. Zou, C. Li, Relationship of microstructure transformation and hardening behavior of type 17-4 PH stainless steel, Journal of University of Science and Technology Beijing, 13(2006): 235-239,doi:10.1016/S1005-8850(06)60050-9.
5 Hsiao C N, Chiou C S, Yang J R, Aging reactions in a 17-4 PH stainless steel, Materials Chemistry and Physics, 74(2002): 134-142, doi:10.1016/S0254-0584(01)00460-6.
6 Y. Y. Gao, Effect of thermal aging under simulated working conditions on dynamic mechanical properties of stainless steel for nuclear power, Xi'an University of Technology, 2018, doi:CNKI:CDMD:2.1018.710024.
7 N. Cao, Study on thermal aging mechanism of stainless steel for nuclear power main pipeline at different temperatures, Xi'an University of Technology, 2019, doi:10.27391/d.cnki.gxagu.2019.000059.
8 Z. P. Wang, F. G. Wang F, Z. T. Liu, Spinodaldecomposition of thermal aging of Z3CN20.09M cast dual-phase steel ,Journal of Xi'an University of Technology, 33 (2013): 643-647, doi:10.3969/j.issn.1673-9965.2013.08.010.
9 N. N. Li, Study on the interaction mechanism between nano-Cu-rich phase and dislocation in RPV simulation steel , Shandong University of Technology, 2019, doi:10.27276/d.cnki.gsdgc.2019.000019.
10 H. Xie, W. Wang, Precipitation characteristics of nano Cu-rich phase in low carbon low alloy steel , Metal Heat Treatment, 43 (2018): 72-76, doi:10.13251/j.issn.0254-6051.2018.02.014.
11 L. Feng, B. X. Zhou, J. C. Peng, RPV simulated the complex crystal structure characterization of nano-Cu-rich precipitates in steel , Materials Engineering, 43 (2015): 80-86, doi:10.11868/j.issn.1001-4381.2015.07.014.
12 W. Wang, L. Wang, X. Y. Zhou, Effect of aging process on precipitation of Cu-rich clusters in reactor pressure vessel steel , Journal of Material Heat Treatment, 34 (2013): 114-119, doi:CNKI:SUN:JSCL.0.2013-12-021.
13 Z. P. Wang, F. G. Wang, Z. T. Liu, Spinodaldecomposition of thermal aging of Z3CN20.09M cast dual-phase steel , Journal of Xi'an University of Technology, 33 (2013): 643-647, doi:10.3969/j.issn.1673-9965.2013.08.010.
14 Y. Sun, Q. B. Yu, Analysis of cleavage fracture mechanism and microstructure of low carbon steel , Journal of Kunming University of Science and Technology (Natural Science Edition), 36 (2011): 18-22, doi:CNKI:SUN:KMLG.0.2011-04-005.
Published
2024-05-31
How to Cite
1.
DuX, Sun Z, Ma X, Ma M, Wang Z, Li T. EFFECT OF LONG-TERM THERMAL AGING AT 475 °C ON EMBRITTLEMENT OF Fe-32Cr-4Ni-4Cu MODEL ALLOY. MatTech [Internet]. 2024May31 [cited 2024Sep.7];58(3):285–293. Available from: https://mater-tehnol.si/index.php/MatTech/article/view/1044