• Rui Wang Liaoning Petrochemical University, School of Mechanical Engineering, Fushun 113001, P.R. China
  • Deming Wang Liaoning Petrochemical University, School of Mechanical Engineering, Fushun 113001, P.R. China
  • Nianchu Wu Liaoning Petrochemical University, School of Mechanical Engineering, Fushun 113001, P.R. China
Keywords: Ni-based amorphous coating, porosity, HVAF, computational simulation, spray distance


The influence of injection distance on the porosity of Ni-based amorphous coatings (AMCs) prepared with a high-velocity air fuel (HVAF) process is discussed based on a numerical analysis and experimental methods. A computational fluid dynamics model was established to demonstrate the gas flow field and behavior of particles in flight at different spraying distances during HVAF spraying. When analyzing the changes in the particle velocity and temperature, the spraying distance is less than 30 µm. The velocity and temperature changes of small particles have a significant impact, and the optimal spray distance (350 mm) for obtaining a low porosity coating is predicted. The calculation was validated experimentally by producing a Ni-based AMC with a low porosity (1.87 %) that was manufactured using the predicted HVAF optimal spraying distance.


[1] A. Inoue, W. Zhang, T. Zhang, Thermal stability and mechanical strength of bulk glassy Ni-Nb-Ti-Zr alloys, Materials Transactions, 43 (2002), 1952-1956, doi:10.2320/matertrans.43.1952
[2] A.P. Wang, X.C. Chang, W.L. Hou, J.Q. Wang, Preparation and corrosion behaviour of amorphous Ni-based alloy coatings, Materials Science and Engineering A, 449 (2007), 277-280, doi:10.1016/j.msea.2006.02.366
[3] A.P. Wang, T. Zhang, J.Q. Wang, Ni-based fully amorphous metallic coating with high corrosion resistance, Philosophical Magazine Letters, 86 (2006), 5-11, doi:10.1080/09500830500479718
[4] Y. Lu, G. Huang, Y. Wang, H. Li, Z. Qin, X. Lu, Crack-free Fe-based amorphous coating synthesized by laser cladding, Materials Letters, 210 (2017), 46-50, doi:10.1016/j.matlet.2017.08.125
[5] Y. Chew, J.H.L. Pang, G. Bi, B. Song, Thermo-mechanical model for simulating laser cladding induced residual stresses with single and multiple clad beads, Journal of Materials Processing Technology, 224 (2015), 89-101, doi:10.1016/j.jmatprotec.2015.04.031
[6] A.H. Dent, A.J. Horlock, D.G. Mccartney, S.J. Harris, Microstructural characterisation of a Ni-Cr-B-C based alloy coating produced by high velocity oxy-fuel thermal spraying, Surface and Coatings Technology, 139 (2001), 244-250, doi:10.1016/S0257-8972(01)00996-3
[7] H. Choi, S. Yoon, G. Kim, H. Jo, C. Lee, Phase evolutions of bulk amorphous NiTiZrSiSn feedstock during thermal and kinetic spraying processes, Scripta Materialia, 53 (2005), 125-130, doi:10.1016/j.scriptamat.2005.01.046
[8] Y. Wang, Z.Z. Xing, Q. Luo, A. Rahmam, J. Jiao, S.J. Qu, Y.G. Zheng, J. Shen, Corrosion and erosion-corrosion behaviour of activated combustion high-velocity air fuel sprayed Fe-based amorphous coatings in chloride-containing solutions-ScienceDirect, Corrosion Science, 98 (2015), 339-353, doi:10.1016/j.corsci.2015.05.044
[9] C. Zhang, R.Q. Guo, Y. Yang, Y. Wu, L. Liu, Influence of the size of spraying powders on the microstructure and corrosion resistance of Fe-based amorphous coating, Electrochimica Acta, 56 (2011), 6380-6388, doi:10.1016/j.electacta.2011.05.020
[10] L. Qiao, Y. Wu, S. Hong, J. Cheng, Z. Wei, Influence of the high-velocity oxygen-fuel spray parameters on the porosity and corrosion resistance of iron-based amorphous coatings, Surface and Coatings Technology, 366 (2019), 296-302, doi:10.1016/j.surfcoat.2019.03.046
[11] N.C. Wu, K. Chen, W.H. Sun, J.Q. Wang, Correlation between particle size and porosity of Fe-based amorphous coating, Surface Engineering, 35 (2019), 37-45, doi:10.1080/02670844.2018.1447782
[12] J. He, M. Ice, E. Lavernia, Particle melting behavior during high-velocity oxygen fuel thermal spraying, Journal of Thermal Spray Technology, 10 (2001), 83-93, doi:10.1361/105996301770349547
[13] T.C. Hanson, G.S. Settles, Particle temperature and velocity effects on the porosity and oxidation of an HVOF corrosion-control coating, Journal of Thermal Spray Technology, 12 (2003), 403-415, doi:10.1361/105996303770348276
[14] E. Dongmo, M. Wenzelburger, R. Gadow, Analysis and optimization of the HVOF process by combined experimental and numerical approaches, Surface & Coatings Technology, 202 (2008), 4470-4478, doi:10.1016/j.surfcoat.2008.04.029
[15] M. Li, P.D. Christofides, Multi-scale modeling and analysis of an industrial HVOF thermal spray process, Chemical Engineering Science, 60 (2005), 3649-3669, doi:10.1016/j.ces.2005.02.043
[16] K. Murugan, A. Ragupathy, V. Balasubramanian, K. Sridhar, Optimizing HVOF spray process parameters to attain minimum porosity and maximum hardness in WC-10Co-4Cr coatings, Surface & Coatings Technology, 247 (2014), 90-102, doi:10.1016/j.surfcoat.2014.03.022
[17] M.H. Lee, J.Y. Lee, D.H. Bae, W.T. Kim, D.J. Sordelet, D.H. Kim, A development of Ni-based alloys with enhanced plasticity, Intermetallics, 12 (2004), 1133-1137, doi:10.1016/j.intermet.2004.04.027
[18] H. Tabbara, S. Gu, Computational simulation of liquid-fuelled HVOF thermal spraying, Surface and Coatings Technology, 204 (2009), 676-684, doi:10.1016/j.surfcoat.2009.09.005
[19] S. Kamnis, S. Gu, Numerical modelling of propane combustion in a high velocity oxygen-fuel thermal spray gun, Chemical Engineering & Processing Process Intensification, 45 (2006), 246-253, doi:10.1016/j.cep.2005.06.011
[20] D. Cheng, Q. Xu, G. Tapaga, E.J. Lavernia, A numerical study of high-velocity oxygen fuel thermal spraying process. Part I: Gas phase dynamics, Metallurgical & Materials Transactions A, 32 (2001), 1609-1620, doi:10.1007/s11661-001-0139-1
[21] M.H. Khan, T. Shamim, Investigation of a dual-stage high velocity oxygen fuel thermal spray system, Applied Energy, 130 (2014), 853-862, doi:10.1016/j.apenergy.2014.03.075
[22] G. Montavon, C. Coddet, C.C. Berndt, S.H. Leigh, Microstructural index to quantify thermal spray deposit microstructures using image analysis, Journal of Thermal Spray Technology, 7 (1998), 229-241, doi:10.1361/105996398770350972
[23] S. Deshpande, A. Kulkarni, S. Sampath, H. Herman, Application of image analysis for characterization of porosity in thermal spray coatings and correlation with small angle neutron scattering, Surface & Coatings Technology, 187 (2004), 6-16, doi:10.1016/j.surfcoat.2004.01.032
[24] H. Tabbra, S. Gu, A study of liquid droplet disintegration for the development of nanostructured coatings, Aiche Jouranl, 58 (2012), 3533-3544, doi:10.1002/aic.13755
[25] R. Ghafouri-Azar, J. Mostaghimi, S. Chandra, M. Charmchi, A stochastic model to simulate the formation of a thermal spray coating, Journal of thermal spray technology, 12 (2003), 53-69, doi:10.1361/105996303770348500
[26] J. Pan, S. Hu, L. Yang, K. Ding, B. Ma, Numerical analysis of flame and particle behavior in an HVOF thermal spray process, Materials and Design, 96 (2016), 370-376, doi:10.1016/j.matdes.2016.02.008
[27] J. Mostaghimi, S. Chandra, R. Ghafouri-Azar, A. Dolatabadi, Modeling thermal spray coating processes: a powerful tool in design and optimization, Surface & Coatings Technology, 163 (2003), 1-11, doi:10.1016/s0257-8972(02)00686-2
[28] J.A. Hearley, J.A. Little, A.J. Sturgeon, The effect of spray parameters on the properties of high velocity oxy-fuel NiAl intermetallic coatings, Surface & Coatings Technology, 123 (2000), 210-218, doi:10.1016/S0257-8972(99)00511-3
[29] G.H. Dai, J. Sang, Y.F. Wang, Research Progress of Natural Gas Dehydration with Supersonic Separator, Journal of Petrochemical Universities, 34 (2021) 63-71, doi:10.3969/j.issn.1006-396X.2021.01.011
How to Cite
Wang R, Wang D, Wu N. INFLUENCE OF SPRAY DISTANCE ON THE POROSITY OF Ni-BASED AMORPHOUS COATINGS: NUMERICAL SIMULATION AND EXPERIMENT. MatTech [Internet]. 2024Apr.3 [cited 2024May18];58(2):217–224. Available from: