PREPARATION AND PROPERTIES OF SiO$_2$/Ag MICROBEADS USING ELECTROLESS PLATING METHOD

PRIPRAVA IN LASTNOSTI SiO$_2$/Ag MIKRO KROGLIC Z METODO PLATIRANJA BREZ POMOČI ELEKTRIČNEGA TOKA

Congcong Zhang, Xiaolei Su*, Jiaqi Yan, Yi Liu

School of Materials Science & Engineering, Xi’an Polytechnic University, Xi’an 710048, China

Prejem rokopisa – received: 2023-01-31; sprejem za objavo – accepted for publication: 2023-09-18

SiO$_2$/Ag microbeads were synthesized using the electroless plating method by changing the addition order and the mixed method of electroless plating. Conducting composites were prepared using the prepared SiO$_2$/Ag microbeads and unsaturated polyester resin as the fillers and substrate, respectively. The microstructure and properties of the prepared microbeads and composite were characterized with a scanning electron microscope (SEM), X-ray diffractometer (XRD), energy dispersive spectrometer (EDS), particle size analyzer, DC milliohm meter and vector network analysis tester. Results show that the SiO$_2$/Ag microbeads prepared with the reverse dropping electroless plating method achieved the best uniformity and integrity of the silver coating on the surfaces of glass beads, and its compaction resistance reached 138.80 mΩ-cm. When the ratio of the prepared SiO$_2$/Ag microbeads and unsaturated polyester resin was 1:2, the obtained coating composite had a resistivity of 2.79×10^{-5} Ω·cm, showing good electromagnetic shielding performance.

Keywords: SiO$_2$/Ag microbeads, electroless plating, conductive coating, electromagnetic shielding

1 INTRODUCTION

In recent years, potential safety hazards caused by electromagnetic radiation have attracted considerable attention due to the growth of the 5G technology and the application of telecommunication and electronic devices. Among the plentiful kinds of materials for the electromagnetic shielding purpose, core-shell structured 6–8 conductive fillers consisting of SiO$_2$ cores and silver shells have been of momentous interest because of their light weight and good conductivity.9 The conventional conductive fillers include silver-coated copper, 10 silver-coated aluminum 11, silver-coated nickel 12 powder, and so on. However, these composite powders are quite heavy, 13 and this limits their applications in lightweight designs. Glass microbeads have the advantages of exhibiting light weight, low thermal conductivity, high and low temperature resistance, corrosion resistance, good thermal stability, 14 high compressive strength, good dispersibility and fluidity; however, a bead itself has no conductivity or electromagnetic shielding characteristic. 15,16 As a result, scholars have made relevant research on silver plating of the surfaces of glass microbeads, discovering the excellent performance of core-shell structured fillers. 17–20

So far, there have been many attempts to synthesize SiO$_2$/Ag composites, 21 involving the micro-emulsion method, 22 chemical reduction method, 23,24 sol-gel method, 25,26 thermal deposition, 27 electroless plating 28,29 and so on. In particular, the electroless plating method, which overcomes the problems of uneven mixing of the material, easy grain growth of the prepared SiO$_2$/Ag composites, 21 involving the micro-emulsion method, 22 chemical reduction method, 23,24 sol-gel method, 25,26 thermal deposition, 27 electroless plating 28,29 and so on. In particular, the electroless plating method, which overcomes the problems of uneven mixing of the mechanical mixing method and easy grain growth of the sol-gel method in reducing alkali metal oxides, is widely used because it is not restricted to the material shape. 30,31 In addition it is a simple and easy-handling 4,30,31 process for the fabrication of silver-plated glass microbead composites with excellent performance. To this end, W.-J. Kim and S.-S. Kim 32 synthesized Ag-coated hollow...
microbeads using a two-step procedure of sensitizing and subsequent electroless plating. Wu et al.32 prepared core-shell SiO\textsubscript{2}/Ag composite microbeads with a dense, complete and scaled silver layer. However, SiO\textsubscript{2}/Ag composites with a complete, uniform and compact silver shell and high-purity are still challenging to be gained.32

In this study, an optimal process for producing uniform, continuous, dense, complete silver33 thin films with excellent electrical conductivity was investigated via altering the addition order and manner of electroless plating. Accordingly, the SiO\textsubscript{2}/Ag core-shell particles were fabricated with a smooth micro-morphology, low resistivity, strong stability, fine silver layer particles and high electromagnetic shielding energy. Meanwhile, probable reaction mechanisms for the formation of the SiO\textsubscript{2}/Ag core-shell microbeads prepared with four electroplating addition methods were also discussed profoundly in this study. Subsequently, conductive coating composites were formed by combining SiO\textsubscript{2}/Ag granules35 and unsaturated polyester resin with screen printing technology. Finally, the EMI shielding performance and resistivity of the coating composites were tested, and the prepared conductive powder was tested via a scanning electron microscope, energy spectrometer, X-ray diffractometer, laser particle size analyzer, DC low resistance tester and other instruments.36–38

2 EXPERIMENTAL PART

2.1 Materials

Stannous chloride (SnCl\textsubscript{2}) was purchased from Tianjin Kernel Chemical Reagent Co., Ltd., China. SiO\textsubscript{2} solid microbeads (≥99 %) with an average size of 48 μm were purchased from Hebei Jinghang Mineral Products Co., Ltd., China. Glucose (C\textsubscript{6}H\textsubscript{12}O\textsubscript{6}) and tartaric acid (C\textsubscript{4}H\textsubscript{6}O\textsubscript{6}) were obtained from Tianjin Tianli Chemical Reagents Co., Ltd., China. Silver nitrate (AgNO\textsubscript{3}) and sodium hydroxide (NaOH) were procured from Damao Chemical Reagent Factory, China. Hydrofluoric acid (HF), absolute alcohol (C\textsubscript{2}H\textsubscript{5}OH), sodium fluoride (NaF), hydrochloric acid (HCl) and ammonia water (NH\textsubscript{3}·H\textsubscript{2}O) were supplied by Tianjin Hongyan Chemical Reagent Factory, China. Polyvinylpyrrolidone (PVP) was provided by Shanghai Aladdin Biochemical Technology Co., Ltd., China. The resin and deionized aqueous solutions were prepared in house. All the reagents and chemicals were of analytical grade and were used as received without further purification.

2.2 Preparation of SiO\textsubscript{2} microbeads

The SiO\textsubscript{2} microbeads (48 μm) were degreased with an NaOH solution, washed with deionized water three times and dried in a vacuum oven at 80 °C for 3 h for future use. In a while, the obtained microbeads were coarsened with a hydrofluoric acid and sodium fluoride mixture that was stirred at room temperature for 10 min at a stirring speed of about 350 min-1, rinsed with deionized water and dried for future use. The aim of the coarsening reaction was to corrode the surfaces of SiO\textsubscript{2} microbeads, thus increasing the surface roughness and specific area. The coarsened microbeads (40 g) were sensitized in a stannous chloride and hydrochloric acid mixture solution containing 6.4 g SnCl\textsubscript{2} + 24 mL HCl + 320 mL distilled water. Afterward the microbeads were sluiced with distilled water, vacuum filtered and dried at 80 °C. A tier of Sn2+ ions adsorbed on the surfaces of silica microbeads reacts with the silver ammonia solution, and [Ag(NH\textsubscript{3})\textsubscript{2}]+ ions are reduced to Ag particles that are uniformly adhered onto the surfaces of microbeads. The newly reduced Ag particles on the silica surface act as the seeds which provide nucleation sites for a new deposition and growth of the silver shell.20,32

A schematic diagram of the pretreatment process of SiO\textsubscript{2} microbeads is shown in Figure 1. SiO\textsubscript{2} is a microbead with a smooth surface. After a variation in the mixed solution with hydrofluoric acid and sodium fluoride, the surface of SiO\textsubscript{2} becomes rough and the specific surface area increases. The rough surface is of great benefit to the adhesion of the Sn2+ film and SiO\textsubscript{2} substrate.

Figure 1: Schematic diagram of the pretreatment process
during the sensitization process. Besides, a large specific surface area provides sites for the Ag seed deposition.41 The Sn2+ film can supply reducing substances which react with the silver ammonia solution used in the activation process to generate silver particles as active sites41. After the deposition of Ag seeds on the glass microbeads, the silver particles are gradually and continuously attached to the surface of SiO\textsubscript{2} to form a SiO\textsubscript{2}/Ag core-shell structure composite via the chemical silver-plating method.

2.3 Synthesis of SiO\textsubscript{2}/Ag microbeads

The SiO\textsubscript{2}/Ag core-shell particles were synthesized through the electroless plating method. In brief, the sensitized microbeads were put in a plating solution containing an oxidizing agent (silver nitrate – AgNO\textsubscript{3}), a reducing agent (glucose – C\textsubscript{6}H\textsubscript{12}O\textsubscript{6}), a stabilizing agent (ethanol – C\textsubscript{2}H\textsubscript{5}OH), a dispersing agent (polyvinylpyrrolidone – PVP), a PH control agent (sodium hydroxide – NaOH) and distilled water. The reducing agent was a mixture of glucose and tartaric acid. The mixing ratio of glucose to tartaric acid was 1:8 by weight. The plating solution was agitated at 40 °C for 20 min, then the NaOH solution was dropwise added into the reaction solution and stirred for 20 minutes in order to adjust the pH value of the solution. After reacting, the Ag-coated microbeads were gravity filtered, rinsed with distilled water and dried at 80 °C in the vacuum oven. After thorough filtering, rinsing and drying, the SiO\textsubscript{2}/Ag core-shell granules were successfully obtained.

In the experiment, four ways of forward dropping, forward mixing, reverse dropping and reverse mixing were used for the electroless silver plating of the pretreated microbeads. A schematic diagram of the adding method of electroless plating is shown in Figure 2. The best preparation parameters obtained through experiments are as follows: AgNO\textsubscript{3} – 15 g/L, an appropriate amount of ammonia water, C\textsubscript{6}H\textsubscript{12}O\textsubscript{6} – 10 g/L, C\textsubscript{2}H\textsubscript{5}OH – 40 mL/L, PVP – 2 g/L, reaction temperature – 40 °C, PH = 11.

2.4 Fabrication of the SiO\textsubscript{2}/Ag coating composite

The SiO\textsubscript{2}/Ag coating composites were prepared using the screen printing technology, and the ratio of SiO\textsubscript{2}/Ag microbeads to unsaturated polyester resin was 1:2 by weight. Firstly, a ceramic rectangular piece was fixed firmly on a screen printer. Then a mixed sizing agent was applied on the ceramic sheet with a scraper. Finally, the ceramic piece was taken out and put into a Petri dish, then dried at 120 °C for 2 h in the vacuum oven. All samples of the SiO\textsubscript{2}/Ag coating composite manufactured with the screen printing technology were cut into a rectangular block with a size of 2.0 cm × 2.0 mm × 0.12 mm.42

2.5 Characterization

The morphologies of SiO\textsubscript{2}/Ag microbeads were investigated using a field emission scanning electron microscope (FE-SEM, Quanta-450-PEG+X-MAX50, FEI Company, Netherlands), operating at an accelerating voltage of 30 kV. The compositional information of the silver-plated glass microbeads was acquired with an energy dispersive spectrometer (EDX, Horiba 7021-H2, SUPU, China) installed on FE-SEM. The crystalline structure and the phase composition of the prepared composites were characterized via X-ray diffraction (XRD, DX-2700BH, Dandong Haoyuan Instrument Co., Ltd., China) under a CuK\textsubscript{α} radiation (λ = 1.5400 nm) at a scanning range (2θ) of 10–90° and a step size of 0.03°.

The particle size and its distribution in the powder were measured with a laser particle size analyzer (JB6100-A, Shanghai Jiubin Instrument Co., Ltd., China) in a size number range of 0.01–1250 μm. The compaction resistance of SiO\textsubscript{2}/Ag core-shell microbeads was tested with a DC milliohm meter (TH2516, Tonghui, China). The resistivity of the conductive coating was gauged as follow:

\[
\rho = \frac{R}{SL}
\]

(1)
The electromagnetic interference (EMI) shielding properties of the conductive composite coating were tested with a vector network analyzer (Keysight E5061B ENA, Shenzhen, China), using the waveguide method within 0.5–6 GHz. The S parameter of electromagnetic shielding was obtained with the vector network analyzer, while the transmittance (T), reflectance (R) and absorptivity (A) were analyzed based on the S parameter.$^{13,43-45} S_{11}$ represents the reflection coefficient on plane T_1; S_{21} represents the forward transmission coefficient from plane T_1 to plane T_2.

$$ R = |S_{11}|^2, \ T = |S_{21}|^2 $$ \hspace{1cm} (2)

$$ A = 1 - R - T $$ \hspace{1cm} (3)

The overall electromagnetic interference shielding effectiveness (SE) of the coating composite was calculated as follows:

$$ SE = SE_R + SE_A + SE_M $$ \hspace{1cm} (4)

$$ SE_R = -10 \log (1 - R) $$ \hspace{1cm} (5)

$$ SE_A = -10 \log (T / (1 - R)) $$ \hspace{1cm} (6)

where SE_R is the microwave reflection, SE_A is the microwave absorption and SE_M is the microwave multiple reflection. When $SE = 15$ dB, the SE_M can be insignificant.$^{13,43-45}$

3 RESULTS AND DISCUSSION

3.1 Micromorphology and characterizations of SiO$_2$/Ag microbeads

3.1.1 Surface micromorphology

The surface micromorphology of the core-shell SiO$_2$/Ag microbeads obtained with different electroless plating methods and under the same magnification of SEM observation is shown in Figure 3. As indicated in Figure 3a, the coating prepared with forward dropping is relatively uniform and complete, while the appearance of SiO$_2$/Ag is a little rough because of uneven growth of silver particles. It is found that there is a lot of agglomeration13 of white flocs around the silver-plated glass microbeads in Figure 3b where the silver applied with forward mixing on the glass microbead surfaces is not uniform. When comparing Figures 3c and 3b, it is obvious that no white flocs are produced near the surfaces of SiO$_2$/Ag microbeads on the former figure where the silver coating is complete and compact. It is also worth noting that Figure 3c shows a SEM image of silver-plated silica microbeads with a smooth surface and homogeneous size. In Figure 3d, the silica microbeads are also completely covered by consecutive silver particles, while the coating effect of the SiO$_2$/Ag core-shell particles synthesized via reverse mixing is relatively poor.

The mechanism diagram of the silver layer growth process is shown in Figure 4. There are two explanations for the reduction mechanism of Ag$^+$. Some scholars think that silver is deposited via a non-autocatalytic process and can be deposited by itself in a solution. Others believe that silver still has an autocatalytic effect, but the catalytic ability is not strong enough so it is necessary to activate SiO$_2$ microbeads before silver particles are continuously attached on the substrate surface.

The specific synthetic mechanisms of the two forward electroless silver plating methods are as follows. Pure silver particles can be relatively uniformly attached and deposited on the surfaces of glass microbeads because the reaction rate via dropping in the forward direction is slow. Furthermore, the oxidation-reduction reaction is generally carried out on the surfaces of microbeads. Meanwhile, the substrate is a glucose solution under this circumstance, which does not form new silver pure elements with the silver nitrate solution as the active site of electroless silver plating so that the preferential growth of Ag occurs in some parts of SiO$_2$ surfaces and the silver shell coating is not uniform. In contrast, the oxidation-reduction reaction rate with forward mixing is too fast, leading to quantities of silver elementary substances in the solution in the form of aggregation. To be specific, before most silver ions reach the surfaces of glass beads, they first react in the electroless plating solution and then form silver elementary substance aggregations in the solution. Only a small amount of silver ions13 react on the surfaces of glass beads, which results in a large number of white flocculent silver elements around SiO$_2$/Ag while most of the glass beads are not completely covered with Ag layers.

Moreover, the explicit synthetic mechanisms of the two reverse chemical silver-plating methods are also clarified. A comparatively mild reaction rate during reverse dropping promotes a uniform deposition of Ag particles and makes Ag cover the silica surface completely to form a silver shell.46 In this case, the silver ammonia solution as the matrix can cause a redox reaction on the surfaces of activated microbeads, forming a thin layer of silver coating that provides stable active sites for an agricent growth in the subsequent Ag plating process.
With an increased plating time, Ag particles are deposited more uniformly onto the SiO₂ surface, gradually forming a core-shell structure, and eventually the covered silver-coated silica beads become complete, uniform and compact. When the reverse mixing method is adopted, the preferential growth of silver ions during the crystallization procedure may lead to aggregated lumps and uneven silver layers on the surface. It is also possible that the mixing reaction starts at a very fast rate so that the growth of silver immediately reaches saturation, which makes the silver nucleate rapidly. During the continuation of chemical silver plating, the concentration of the reaction solution decreases and the silver enters the growth stage, resulting in the separation of nucleation and growth of silver, and thus silver lumps appear somewhere on the surface as shown in Figure 3d.

3.1.2 EDS characterization

The chemical compositions of SiO₂/Ag microbeads prepared with the reaction methods with different addition orders were analyzed using an energy dispersive X-ray spectrometer (EDS) as shown in Figure 5. As can be seen on this figure, only Si, O, Ca, Na and Ag peaks are clearly shown and no other peaks are detected. The content of Ag on the surface of SiO₂/Ag is about (49.9, 43.7, 54.1 and 51.6) wt% when the preparing methods are forward dropping, forward mixing, reverse dropping and reverse mixing, respectively. This means that an Ag shell with a high purity was acquired on silica microbeads in the current study.

3.1.3 XRD characterization

The spectra in Figure 6 show typical X-ray diffraction (XRD) patterns of silver-plated glass beads prepared with the four reaction methods with different addition orders to verify the crystalline properties and phase purity of the obtained samples. The four well-resolved diffraction peaks of SiO₂/Ag core-shell composites are observed at 2θ angles of 38.12°, 44.30°, 64.44° and 77.40°, in a range of approximately 30–80°, corresponding to the reflections of the (111), (200), (220) and (311) crystal
planes of face-centered cubic (FCC) metal silver (JCPDS Card No. 87-0720), respectively. There is no diffraction peak of silver compounds, indicating that the pure Ag particles with high crystallinity were deposited to grow on the Ag seeds on the surface of SiO₂. These XRD results agree well with those of SEM observations.

3.2 Particle size of SiO₂/Ag microbeads

The particle sizes of SiO₂/Ag microbeads prepared with different electroless plating methods are shown in Figure 7. It can be seen that the particle magnitude range obtained for the experimental glass microbeads is about 20–67 μm and its D50 is about 34 μm. It is also clear from the figure that there is almost no big difference between the average particle sizes of the samples prepared with the four methods. In addition, the total number of particles below 5 μm in silver plated glass microbeads produced with the reverse method is larger than that obtained with the forward method. This is because there are a few dissociative silver particles in the forward reaction process, leading to an increase in the accumulation of ultra-fine particles, while the cumulant of the silver-plated glass microbeads in this size range is relatively limited in the reverse course of reaction. It can be further explained that silver grows better on the surfaces of glass microbeads during reverse electroless silver plating.

3.3 Measurement of resistance of SiO₂/Ag microbeads

The compaction resistance of SiO₂/Ag conductive microbeads is shown in Table 1. It can be clearly seen that the electric resistance of the sample obtained with forward mixing is the highest, while that of the sample obtained with reverse mixing is the lowest. This may be because the matrix is a silver ammonia solution which first reacts with the substance on the surfaces of the glass microbeads, and then the thin layer of Ag is reduced to supply active sites for the subsequent electroless plating during the reverse reaction process. However, the active sites are relatively insufficient in the forward reaction process, leading to a comparatively unsatisfactory coating effort, resulting in an enhancement of the resistance values.

3.4 Measurement of resistivity of SiO₂/Ag coating composites

The conductive coatings composed of SiO₂/Ag microbeads were made using the screen printing technology, and its parameters were 2.0 cm, 2.0 mm, 0.12 mm in length, width and thickness, respectively. The mass ratio of SiO₂/Ag microbeads to unsaturated polyester resin was 1:2. The resistance of these coatings was tested with a DC milliohm meter and then the resistivity of the layers was calculated. The testing information is shown in Table 2. It is clearly seen that the resistivity of the SiO₂/Ag coating composite obtained with forward mixing is the largest, and the one prepared by reverse dropping is relatively small, with values of 3.64 × 10⁻⁵ Ω·cm and 2.79 × 10⁻⁵ Ω·cm, respectively. It is also worth noting that the resistivity of the SiO₂/Ag coating obtained with reverse mixing is smaller than that obtained with reverse dropping, which is consistent with the result for the compaction resistance of SiO₂/Ag microbeads.

The resistance of the samples obtained with forward mixing is the highest, while that of the microbeads and its coating obtained with reverse mixing is the lowest. This may be because the matrix is a silver ammonia solution which first reacts with the substance on the surfaces of the glass microbeads, and then the thin layer of Ag is reduced to supply active sites for the subsequent electroless plating during the reverse reaction process. However, the active sites are relatively insufficient in the forward reaction process, leading to a comparatively unsatisfactory coating effort, resulting in an enhancement of the resistance values.

The reason why the resistance of the microbeads prepared with reverse mixing addition is better than that obtained with reverse dropping addition may be as follows. At the beginning of the reaction, the speed of reverse mixing was fast, and in the meantime the silver generation rate had reached saturation, resulting in a rapid nucleation. Afterwards, with a decrease in the reaction concentration, the reaction rate began to slow down, and the nucleation and growth were basically separated, resulting in the phenomenon of explosive nucleation and slow
growth. In addition, too slow a rate at the later stage of reverse mixing reaction may have also brought about the preferential growth of silver, leading to an aggregation of Ag particles on the surfaces of microbeads. Because of the existence of silver nuggets, the resistance of the SiO$_2$/Ag microbeads and coating composites gained with reverse mixing is smaller than that obtained with reverse dropping.

3.5 Electromagnetic shielding performance of SiO$_2$/Ag conductive coatings

In this experiment, a shielding test was conducted in an electromagnetic wave frequency range of 0.5–6 GHz. The electromagnetic shielding effectiveness of the SiO$_2$/Ag conductive coating is shown in Figure 8. The common trend of the four curves indicates that the SE$_R$ value increases as the frequency of electromagnetic waves decreases, significantly increasing from (45.10, 45.6, 46.25 and 46.63) dB to (55.88, 56.42, 57.05 and 57.43) dB due to the electroless Ag-plating methods including forward mixing, forward dropping, reverse dropping and reverse mixing, respectively. When the waves are shorter than 1 GHz, the electromagnetic shielding of SiO$_2$/Ag coatings exhibits a comparatively high performance with a SE$_R$ value exceeding 52 dB. Detailed relationship between the electromagnetic shielding effectiveness and efficiency can be found in Table 3. According to the experimental results and measurements, the shielding efficiency of all four kinds of SiO$_2$/Ag conductive coatings is 99.999%.

It is obvious from Figure 8 that the electromagnetic shielding effectiveness of the conductive coating prepared with the reverse mixing method is the best, while the one obtained with the forward mixing method is the poorest. Moreover, the shielding curves of the conductive coatings prepared with reverse dripping and reverse mixing are very close. It is well known that the electromagnetic shielding performance increases with a decrease in the resistance and resistivity. This result agrees well with those of resistance and resistivity measurements, and the phenomenon, according to which the shielding curve of the SiO$_2$/Ag coating obtained with reverse mixing is slightly higher than that obtained for reverse dropping, is caused by the presence of silver nuggets on the SiO$_2$/Ag powder surface. The complex conductive coating is composed of many SiO$_2$/Ag microbeads, which connect with each other to form a continuous conductive network. The increase in the SE$_R$ of these four different SiO$_2$/Ag coatings is attributed to the content, uniformity and integrity of the silver adhered over the SiO$_2$ microbeads.

4 CONCLUSIONS

High-performance SiO$_2$/Ag core-shell composites with both superior surface topography and electromagnetic shielding properties were successively synthesized via the reverse dropping electroless plating method and utilized as conductive fillers to manufacture a SiO$_2$/Ag conductive coating. Their microstructure, chemical composition, phase composition, particle size, conductivity and electromagnetic interference shielding properties were investigated. The results of SEM, EDS, XRD, particle size analyzer and DC milliohm meter showed that SiO$_2$ microbeads were covered with a uniform, continuous, complete and compact Ag shell, which allowed silver-plated glass beads to have good conductivity; its compaction resistance was 138.80 mΩ·cm, the silver layer had an fcc structure, and its D50 was about 34 μm.
The results also showed that the effect of reverse electroless Ag-plating was better than that of a forward reaction, and the coating effect of dropping was better than that of mixing. Almost no white flocs were produced on the surfaces of silver-plated glass beads prepared with the reverse dropping method, and the coating was dense, uniform and complete. Besides, the Ag content of the coating was relatively high, reaching about 54.1 w/%, and the silver shells did not fall off easily.

By analyzing the silver layer growth and SiO2/Ag microbead synthesis mechanisms, it can be concluded that both the reaction speed and reactant addition order had a major impact on the deposition and growth of silver particles where neither too fast nor too slow a reaction rate was conducive to electroless Ag-plating. In this system of taking Ag-seeds as active sites of Ag-shell growth, surface morphologies and application performances of the micro-composites can be well controlled and regulated by changing the addition order and using the mixed method of electroless plating. The prepared coating composite fabricated of unsaturated polyester resin and SiO2/Ag, obtained through reverse dropping, with a ratio of 1:2, exhibits excellent electromagnetic shielding performance5–6 including a resistivity of 2.79 × 10–5 Ωcm, SERS value of 57.05 dB and wave frequency range of 0.5–6 GHz. This result is mainly attributed to the formation of a conductive path and improvement of electrical conductivity through SiO2/Ag core-shell10 particles acting as the conductive fillers. In conclusion, the SiO2/Ag microbeads obtained with reverse dropping have great potentials and promising applications in the field of EMI shielding.

Acknowledgments

The authors gratefully acknowledge support from the Scientific Research Program Funded by Education Department of Shaanxi Provincial Government (Program No.23JC036) and Scientific and Technological Plan Project of Xi’an Science and Technology Bureau (Program No. 23KGDW0031-2022).

5 REFERENCES

5 Z. Ding, X. Xiang, J. Li, S. Wu. Molecular Mechanism of Malignant Transformation of Balb/c–3T3 Cells Induced by Long-Term Exposure to 1800 MHz Radiofrequency Electromagnetic Radiation (RF-EMR). Bioengineering (Basel), 9 (2022) 2, 43–43, doi:10.3390/bioengineering9200193
Preparation and Properties of SiO2/Ag Microbeads Using Electroless Plating Method

37 Y. Liu, Y. Zhou, Y. Lin, G. Jia, One-pot microwave-assisted synthesis of Ag2Se and photothermal conversion, Results in Physics, 38 (2022), doi:10.1016/j.rinp.2022.105590

38 C. Zhang et al.: Preparation and Properties of SiO2/Ag Microbeads Using Electroless Plating Method

Materials in tehnologije / Materials and technology 57 (2023) 6, 607–616

C. Zhang et al. / Preparation and Properties of SiO2/Ag Microbeads Using Electroless Plating Method

J. T. Orasugh, S. S. Ray, Graphene-Based Electrospun Fibrous Materials with Enhanced EMI Shielding: Recent Developments and Future Perspectives, ACS Omega, 7 (2022) 38, 33699–33718, doi:10.1021/acsomega.2c03579
